test_inner.py 7.0 KB
Newer Older
Z
zhiboniu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import unittest

import numpy as np

import paddle
from paddle.static import Program, program_guard


class TestMultiplyApi(unittest.TestCase):
    def _run_static_graph_case(self, x_data, y_data):
        with program_guard(Program(), Program()):
            paddle.enable_static()
            x = paddle.static.data(
                name='x', shape=x_data.shape, dtype=x_data.dtype)
            y = paddle.static.data(
                name='y', shape=y_data.shape, dtype=y_data.dtype)
            res = paddle.inner(x, y)

            place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda(
            ) else paddle.CPUPlace()
            exe = paddle.static.Executor(place)
            outs = exe.run(paddle.static.default_main_program(),
                           feed={'x': x_data,
                                 'y': y_data},
                           fetch_list=[res])
            res = outs[0]
            return res

    def _run_dynamic_graph_case(self, x_data, y_data):
        paddle.disable_static()
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
        res = paddle.inner(x, y)
        return res.numpy()

    def test_multiply(self):
        np.random.seed(7)

        # test static computation graph: 3-d array
        x_data = np.random.rand(2, 10, 10).astype(np.float64)
        y_data = np.random.rand(2, 5, 10).astype(np.float64)
        res = self._run_static_graph_case(x_data, y_data)
        self.assertTrue(np.allclose(res, np.inner(x_data, y_data)))

        # test static computation graph: 2-d array
        x_data = np.random.rand(200, 5).astype(np.float64)
        y_data = np.random.rand(50, 5).astype(np.float64)
        res = self._run_static_graph_case(x_data, y_data)
        self.assertTrue(np.allclose(res, np.inner(x_data, y_data)))

        # test static computation graph: 1-d array
        x_data = np.random.rand(50).astype(np.float64)
        y_data = np.random.rand(50).astype(np.float64)
        res = self._run_static_graph_case(x_data, y_data)
        self.assertTrue(np.allclose(res, np.inner(x_data, y_data)))

        # test dynamic computation graph: 3-d array
        x_data = np.random.rand(5, 10, 10).astype(np.float64)
        y_data = np.random.rand(2, 10).astype(np.float64)
        res = self._run_dynamic_graph_case(x_data, y_data)
        self.assertTrue(np.allclose(res, np.inner(x_data, y_data)))

        # test dynamic computation graph: 2-d array
        x_data = np.random.rand(20, 50).astype(np.float64)
        y_data = np.random.rand(50).astype(np.float64)
        res = self._run_dynamic_graph_case(x_data, y_data)
        self.assertTrue(np.allclose(res, np.inner(x_data, y_data)))

        # test dynamic computation graph: Scalar
        x_data = np.random.rand(20, 10).astype(np.float32)
        y_data = np.random.rand(1).astype(np.float32).item()
        res = self._run_dynamic_graph_case(x_data, y_data)
        self.assertTrue(np.allclose(res, np.inner(x_data, y_data)))

        # test dynamic computation graph: 2-d array Complex
        x_data = np.random.rand(20,
                                50).astype(np.float64) + 1J * np.random.rand(
                                    20, 50).astype(np.float64)
        y_data = np.random.rand(50).astype(np.float64) + 1J * np.random.rand(
            50).astype(np.float64)
        res = self._run_dynamic_graph_case(x_data, y_data)
        self.assertTrue(np.allclose(res, np.inner(x_data, y_data)))

        # test dynamic computation graph: 3-d array Complex
        x_data = np.random.rand(5, 10,
                                10).astype(np.float64) + 1J * np.random.rand(
                                    5, 10, 10).astype(np.float64)
        y_data = np.random.rand(2, 10).astype(np.float64) + 1J * np.random.rand(
            2, 10).astype(np.float64)
        res = self._run_dynamic_graph_case(x_data, y_data)
        self.assertTrue(np.allclose(res, np.inner(x_data, y_data)))


class TestMultiplyError(unittest.TestCase):
    def test_errors(self):
        # test static computation graph: dtype can not be int8
        paddle.enable_static()
        with program_guard(Program(), Program()):
            x = paddle.static.data(name='x', shape=[100], dtype=np.int8)
            y = paddle.static.data(name='y', shape=[100], dtype=np.int8)
            self.assertRaises(TypeError, paddle.inner, x, y)

        # test static computation graph: inputs must be broadcastable 
        with program_guard(Program(), Program()):
            x = paddle.static.data(name='x', shape=[20, 50], dtype=np.float64)
            y = paddle.static.data(name='y', shape=[20], dtype=np.float64)
            self.assertRaises(ValueError, paddle.inner, x, y)

        np.random.seed(7)
        # test dynamic computation graph: dtype can not be int8
        paddle.disable_static()
        x_data = np.random.randn(200).astype(np.int8)
        y_data = np.random.randn(200).astype(np.int8)
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
        self.assertRaises(RuntimeError, paddle.inner, x, y)

        # test dynamic computation graph: inputs must be broadcastable
        x_data = np.random.rand(20, 5)
        y_data = np.random.rand(10, 2)
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
        self.assertRaises(ValueError, paddle.inner, x, y)

        # test dynamic computation graph: dtype must be same	
        x_data = np.random.randn(200).astype(np.float32)
        y_data = np.random.randn(200).astype(np.float64)
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
        self.assertRaises(ValueError, paddle.inner, x, y)

        # test dynamic computation graph: dtype must be Tensor type
        x_data = np.random.randn(200).astype(np.float64)
        y_data = np.random.randn(200).astype(np.float64)
        y = paddle.to_tensor(y_data)
        self.assertRaises(ValueError, paddle.inner, x_data, y)

        # test dynamic computation graph: dtype must be Tensor type
        x_data = np.random.randn(200).astype(np.float64)
        y_data = np.random.randn(200).astype(np.float64)
        x = paddle.to_tensor(x_data)
        self.assertRaises(ValueError, paddle.inner, x, y_data)

        # test dynamic computation graph: dtype must be Tensor type
        x_data = np.random.randn(200).astype(np.float32)
        y_data = np.random.randn(200).astype(np.float32)
        self.assertRaises(ValueError, paddle.inner, x_data, y_data)


if __name__ == '__main__':
H
hong 已提交
166
    paddle.enable_static()
Z
zhiboniu 已提交
167
    unittest.main()