test_detection.py 36.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import paddle.fluid as fluid
import paddle.fluid.layers as layers
19
from paddle.fluid.layers import detection
20
from paddle.fluid.framework import Program, program_guard
C
chengduoZH 已提交
21
import unittest
22 23 24 25 26
import contextlib
import numpy as np
from unittests.test_imperative_base import new_program_scope
from paddle.fluid.dygraph import base
from paddle.fluid import core
P
pangyoki 已提交
27 28 29
import paddle

paddle.enable_static()
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75


class LayerTest(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.seed = 111

    @classmethod
    def tearDownClass(cls):
        pass

    def _get_place(self, force_to_use_cpu=False):
        # this option for ops that only have cpu kernel
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()

    @contextlib.contextmanager
    def static_graph(self):
        with new_program_scope():
            fluid.default_startup_program().random_seed = self.seed
            fluid.default_main_program().random_seed = self.seed
            yield

    def get_static_graph_result(self,
                                feed,
                                fetch_list,
                                with_lod=False,
                                force_to_use_cpu=False):
        exe = fluid.Executor(self._get_place(force_to_use_cpu))
        exe.run(fluid.default_startup_program())
        return exe.run(fluid.default_main_program(),
                       feed=feed,
                       fetch_list=fetch_list,
                       return_numpy=(not with_lod))

    @contextlib.contextmanager
    def dynamic_graph(self, force_to_use_cpu=False):
        with fluid.dygraph.guard(
                self._get_place(force_to_use_cpu=force_to_use_cpu)):
            fluid.default_startup_program().random_seed = self.seed
            fluid.default_main_program().random_seed = self.seed
            yield
76 77


78
class TestDetection(unittest.TestCase):
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    def test_detection_output(self):
        program = Program()
        with program_guard(program):
            pb = layers.data(
                name='prior_box',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            pbv = layers.data(
                name='prior_box_var',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            loc = layers.data(
                name='target_box',
Y
Yuan Gao 已提交
94
                shape=[2, 10, 4],
95 96 97 98
                append_batch_size=False,
                dtype='float32')
            scores = layers.data(
                name='scores',
Y
Yuan Gao 已提交
99
                shape=[2, 10, 20],
100 101 102 103
                append_batch_size=False,
                dtype='float32')
            out = layers.detection_output(
                scores=scores, loc=loc, prior_box=pb, prior_box_var=pbv)
104 105 106 107 108 109
            out2, index = layers.detection_output(
                scores=scores,
                loc=loc,
                prior_box=pb,
                prior_box_var=pbv,
                return_index=True)
110
            self.assertIsNotNone(out)
111 112
            self.assertIsNotNone(out2)
            self.assertIsNotNone(index)
113
            self.assertEqual(out.shape[-1], 6)
114
        print(str(program))
115

J
jerrywgz 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128
    def test_box_coder_api(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[4], dtype='float32')
            y = layers.data(name='z', shape=[4], dtype='float32', lod_level=1)
            bcoder = layers.box_coder(
                prior_box=x,
                prior_box_var=[0.1, 0.2, 0.1, 0.2],
                target_box=y,
                code_type='encode_center_size')
            self.assertIsNotNone(bcoder)
        print(str(program))

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
    def test_box_coder_error(self):
        program = Program()
        with program_guard(program):
            x1 = fluid.data(name='x1', shape=[10, 4], dtype='int32')
            y1 = fluid.data(
                name='y1', shape=[10, 4], dtype='float32', lod_level=1)
            x2 = fluid.data(name='x2', shape=[10, 4], dtype='float32')
            y2 = fluid.data(
                name='y2', shape=[10, 4], dtype='int32', lod_level=1)

            self.assertRaises(
                TypeError,
                layers.box_coder,
                prior_box=x1,
                prior_box_var=[0.1, 0.2, 0.1, 0.2],
                target_box=y1,
                code_type='encode_center_size')
            self.assertRaises(
                TypeError,
                layers.box_coder,
                prior_box=x2,
                prior_box_var=[0.1, 0.2, 0.1, 0.2],
                target_box=y2,
                code_type='encode_center_size')

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
    def test_detection_api(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[4], dtype='float32')
            y = layers.data(name='y', shape=[4], dtype='float32')
            z = layers.data(name='z', shape=[4], dtype='float32', lod_level=1)
            iou = layers.iou_similarity(x=x, y=y)
            bcoder = layers.box_coder(
                prior_box=x,
                prior_box_var=y,
                target_box=z,
                code_type='encode_center_size')
            self.assertIsNotNone(iou)
            self.assertIsNotNone(bcoder)

            matched_indices, matched_dist = layers.bipartite_match(iou)
            self.assertIsNotNone(matched_indices)
            self.assertIsNotNone(matched_dist)

            gt = layers.data(
                name='gt', shape=[1, 1], dtype='int32', lod_level=1)
            trg, trg_weight = layers.target_assign(
                gt, matched_indices, mismatch_value=0)
            self.assertIsNotNone(trg)
            self.assertIsNotNone(trg_weight)

            gt2 = layers.data(
                name='gt2', shape=[10, 4], dtype='float32', lod_level=1)
            trg, trg_weight = layers.target_assign(
                gt2, matched_indices, mismatch_value=0)
            self.assertIsNotNone(trg)
            self.assertIsNotNone(trg_weight)

187
        print(str(program))
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

    def test_ssd_loss(self):
        program = Program()
        with program_guard(program):
            pb = layers.data(
                name='prior_box',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            pbv = layers.data(
                name='prior_box_var',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            loc = layers.data(name='target_box', shape=[10, 4], dtype='float32')
            scores = layers.data(name='scores', shape=[10, 21], dtype='float32')
            gt_box = layers.data(
                name='gt_box', shape=[4], lod_level=1, dtype='float32')
            gt_label = layers.data(
                name='gt_label', shape=[1], lod_level=1, dtype='int32')
            loss = layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
            self.assertIsNotNone(loss)
            self.assertEqual(loss.shape[-1], 1)
211
        print(str(program))
212 213


214 215
class TestPriorBox(unittest.TestCase):
    def test_prior_box(self):
216 217 218 219 220 221 222 223 224 225 226
        program = Program()
        with program_guard(program):
            data_shape = [3, 224, 224]
            images = fluid.layers.data(
                name='pixel', shape=data_shape, dtype='float32')
            conv1 = fluid.layers.conv2d(images, 3, 3, 2)
            box, var = layers.prior_box(
                input=conv1,
                image=images,
                min_sizes=[100.0],
                aspect_ratios=[1.],
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
                flip=True,
                clip=True)
            assert len(box.shape) == 4
            assert box.shape == var.shape
            assert box.shape[3] == 4


class TestPriorBox2(unittest.TestCase):
    def test_prior_box(self):
        program = Program()
        with program_guard(program):
            data_shape = [None, 3, None, None]
            images = fluid.data(name='pixel', shape=data_shape, dtype='float32')
            conv1 = fluid.layers.conv2d(images, 3, 3, 2)
            box, var = layers.prior_box(
                input=conv1,
                image=images,
                min_sizes=[100.0],
                aspect_ratios=[1.],
246 247 248 249 250
                flip=True,
                clip=True)
            assert len(box.shape) == 4
            assert box.shape == var.shape
            assert box.shape[3] == 4
251 252


R
ruri 已提交
253 254
class TestDensityPriorBox(unittest.TestCase):
    def test_density_prior_box(self):
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
        program = Program()
        with program_guard(program):
            data_shape = [3, 224, 224]
            images = fluid.layers.data(
                name='pixel', shape=data_shape, dtype='float32')
            conv1 = fluid.layers.conv2d(images, 3, 3, 2)
            box, var = layers.density_prior_box(
                input=conv1,
                image=images,
                densities=[3, 4],
                fixed_sizes=[50., 60.],
                fixed_ratios=[1.0],
                clip=True)
            assert len(box.shape) == 4
            assert box.shape == var.shape
            assert box.shape[-1] == 4
R
ruri 已提交
271 272


273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
class TestAnchorGenerator(unittest.TestCase):
    def test_anchor_generator(self):
        data_shape = [3, 224, 224]
        images = fluid.layers.data(
            name='pixel', shape=data_shape, dtype='float32')
        conv1 = fluid.layers.conv2d(images, 3, 3, 2)
        anchor, var = fluid.layers.anchor_generator(
            input=conv1,
            anchor_sizes=[64, 128, 256, 512],
            aspect_ratios=[0.5, 1.0, 2.0],
            variance=[0.1, 0.1, 0.2, 0.2],
            stride=[16.0, 16.0],
            offset=0.5)
        assert len(anchor.shape) == 4
        assert anchor.shape == var.shape
        assert anchor.shape[3] == 4


291
class TestGenerateProposalLabels(unittest.TestCase):
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
    def check_out(self, outs):
        rois = outs[0]
        labels_int32 = outs[1]
        bbox_targets = outs[2]
        bbox_inside_weights = outs[3]
        bbox_outside_weights = outs[4]
        assert rois.shape[1] == 4
        assert rois.shape[0] == labels_int32.shape[0]
        assert rois.shape[0] == bbox_targets.shape[0]
        assert rois.shape[0] == bbox_inside_weights.shape[0]
        assert rois.shape[0] == bbox_outside_weights.shape[0]
        assert bbox_targets.shape[1] == 4 * self.class_nums
        assert bbox_inside_weights.shape[1] == 4 * self.class_nums
        assert bbox_outside_weights.shape[1] == 4 * self.class_nums
        if len(outs) == 6:
            max_overlap_with_gt = outs[5]
            assert max_overlap_with_gt.shape[0] == rois.shape[0]

310
    def test_generate_proposal_labels(self):
311 312
        program = Program()
        with program_guard(program):
313 314 315 316 317 318 319 320 321 322 323 324
            rpn_rois = fluid.data(
                name='rpn_rois', shape=[4, 4], dtype='float32', lod_level=1)
            gt_classes = fluid.data(
                name='gt_classes', shape=[6], dtype='int32', lod_level=1)
            is_crowd = fluid.data(
                name='is_crowd', shape=[6], dtype='int32', lod_level=1)
            gt_boxes = fluid.data(
                name='gt_boxes', shape=[6, 4], dtype='float32', lod_level=1)
            im_info = fluid.data(name='im_info', shape=[1, 3], dtype='float32')
            max_overlap = fluid.data(
                name='max_overlap', shape=[4], dtype='float32', lod_level=1)
            self.class_nums = 5
325
            outs = fluid.layers.generate_proposal_labels(
326 327 328 329 330 331 332 333 334 335 336
                rpn_rois=rpn_rois,
                gt_classes=gt_classes,
                is_crowd=is_crowd,
                gt_boxes=gt_boxes,
                im_info=im_info,
                batch_size_per_im=2,
                fg_fraction=0.5,
                fg_thresh=0.5,
                bg_thresh_hi=0.5,
                bg_thresh_lo=0.0,
                bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
                class_nums=self.class_nums)
            outs_1 = fluid.layers.generate_proposal_labels(
                rpn_rois=rpn_rois,
                gt_classes=gt_classes,
                is_crowd=is_crowd,
                gt_boxes=gt_boxes,
                im_info=im_info,
                batch_size_per_im=2,
                fg_fraction=0.5,
                fg_thresh=0.5,
                bg_thresh_hi=0.5,
                bg_thresh_lo=0.0,
                bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
                class_nums=self.class_nums,
                is_cascade_rcnn=True,
                max_overlap=max_overlap,
                return_max_overlap=True)

            self.check_out(outs)
            self.check_out(outs_1)
357
            rois = outs[0]
358 359


360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
class TestGenerateMaskLabels(unittest.TestCase):
    def test_generate_mask_labels(self):
        program = Program()
        with program_guard(program):
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            gt_classes = layers.data(
                name='gt_classes',
                shape=[2, 1],
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            is_crowd = layers.data(
                name='is_crowd',
                shape=[2, 1],
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            gt_segms = layers.data(
                name='gt_segms',
                shape=[20, 2],
                dtype='float32',
                lod_level=3,
                append_batch_size=False)
            rois = layers.data(
                name='rois',
                shape=[4, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            labels_int32 = layers.data(
                name='labels_int32',
                shape=[4, 1],
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            num_classes = 5
            resolution = 14
            outs = fluid.layers.generate_mask_labels(
                im_info=im_info,
                gt_classes=gt_classes,
                is_crowd=is_crowd,
                gt_segms=gt_segms,
                rois=rois,
                labels_int32=labels_int32,
                num_classes=num_classes,
                resolution=resolution)
            mask_rois, roi_has_mask_int32, mask_int32 = outs
            assert mask_rois.shape[1] == 4
            assert mask_int32.shape[1] == num_classes * resolution * resolution


C
chengduoZH 已提交
416 417
class TestMultiBoxHead(unittest.TestCase):
    def test_multi_box_head(self):
418
        data_shape = [3, 224, 224]
C
chengduoZH 已提交
419
        mbox_locs, mbox_confs, box, var = self.multi_box_head_output(data_shape)
420 421 422 423

        assert len(box.shape) == 2
        assert box.shape == var.shape
        assert box.shape[1] == 4
Y
Yuan Gao 已提交
424
        assert mbox_locs.shape[1] == mbox_confs.shape[1]
C
chengduoZH 已提交
425 426

    def multi_box_head_output(self, data_shape):
C
chengduoZH 已提交
427 428
        images = fluid.layers.data(
            name='pixel', shape=data_shape, dtype='float32')
429 430 431 432 433
        conv1 = fluid.layers.conv2d(images, 3, 3, 2)
        conv2 = fluid.layers.conv2d(conv1, 3, 3, 2)
        conv3 = fluid.layers.conv2d(conv2, 3, 3, 2)
        conv4 = fluid.layers.conv2d(conv3, 3, 3, 2)
        conv5 = fluid.layers.conv2d(conv4, 3, 3, 2)
C
chengduoZH 已提交
434

C
chengduoZH 已提交
435
        mbox_locs, mbox_confs, box, var = layers.multi_box_head(
C
chengduoZH 已提交
436 437
            inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
            image=images,
C
chengduoZH 已提交
438
            num_classes=21,
C
chengduoZH 已提交
439 440 441 442 443 444 445
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
C
chengduoZH 已提交
446

C
chengduoZH 已提交
447
        return mbox_locs, mbox_confs, box, var
C
chengduoZH 已提交
448 449


450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
class TestDetectionMAP(unittest.TestCase):
    def test_detection_map(self):
        program = Program()
        with program_guard(program):
            detect_res = layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')
            label = layers.data(
                name='label',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')

465
            map_out = detection.detection_map(detect_res, label, 21)
466 467
            self.assertIsNotNone(map_out)
            self.assertEqual(map_out.shape, (1, ))
468
        print(str(program))
469 470


471 472 473 474
class TestRpnTargetAssign(unittest.TestCase):
    def test_rpn_target_assign(self):
        program = Program()
        with program_guard(program):
475 476
            bbox_pred_shape = [10, 50, 4]
            cls_logits_shape = [10, 50, 2]
477 478
            anchor_shape = [50, 4]

479 480 481
            bbox_pred = layers.data(
                name='bbox_pred',
                shape=bbox_pred_shape,
482 483
                append_batch_size=False,
                dtype='float32')
484 485 486
            cls_logits = layers.data(
                name='cls_logits',
                shape=cls_logits_shape,
487 488 489 490 491 492 493 494 495 496 497 498
                append_batch_size=False,
                dtype='float32')
            anchor_box = layers.data(
                name='anchor_box',
                shape=anchor_shape,
                append_batch_size=False,
                dtype='float32')
            anchor_var = layers.data(
                name='anchor_var',
                shape=anchor_shape,
                append_batch_size=False,
                dtype='float32')
499 500 501 502
            gt_boxes = layers.data(
                name='gt_boxes', shape=[4], lod_level=1, dtype='float32')
            is_crowd = layers.data(
                name='is_crowd',
503
                shape=[1, 10],
504 505 506 507 508 509 510 511 512
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
513
            outs = layers.rpn_target_assign(
514 515
                bbox_pred=bbox_pred,
                cls_logits=cls_logits,
516 517
                anchor_box=anchor_box,
                anchor_var=anchor_var,
518 519 520
                gt_boxes=gt_boxes,
                is_crowd=is_crowd,
                im_info=im_info,
521
                rpn_batch_size_per_im=256,
522 523
                rpn_straddle_thresh=0.0,
                rpn_fg_fraction=0.5,
524
                rpn_positive_overlap=0.7,
J
jerrywgz 已提交
525 526
                rpn_negative_overlap=0.3,
                use_random=False)
527 528 529 530 531
            pred_scores = outs[0]
            pred_loc = outs[1]
            tgt_lbl = outs[2]
            tgt_bbox = outs[3]
            bbox_inside_weight = outs[4]
532

533 534 535 536
            self.assertIsNotNone(pred_scores)
            self.assertIsNotNone(pred_loc)
            self.assertIsNotNone(tgt_lbl)
            self.assertIsNotNone(tgt_bbox)
J
jerrywgz 已提交
537
            self.assertIsNotNone(bbox_inside_weight)
538 539 540
            assert pred_scores.shape[1] == 1
            assert pred_loc.shape[1] == 4
            assert pred_loc.shape[1] == tgt_bbox.shape[1]
J
jerrywgz 已提交
541
            print(str(program))
542 543


544
class TestGenerateProposals(LayerTest):
545
    def test_generate_proposals(self):
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
        scores_np = np.random.rand(2, 3, 4, 4).astype('float32')
        bbox_deltas_np = np.random.rand(2, 12, 4, 4).astype('float32')
        im_info_np = np.array([[8, 8, 0.5], [6, 6, 0.5]]).astype('float32')
        anchors_np = np.reshape(np.arange(4 * 4 * 3 * 4),
                                [4, 4, 3, 4]).astype('float32')
        variances_np = np.ones((4, 4, 3, 4)).astype('float32')

        with self.static_graph():
            scores = fluid.data(
                name='scores', shape=[2, 3, 4, 4], dtype='float32')
            bbox_deltas = fluid.data(
                name='bbox_deltas', shape=[2, 12, 4, 4], dtype='float32')
            im_info = fluid.data(name='im_info', shape=[2, 3], dtype='float32')
            anchors = fluid.data(
                name='anchors', shape=[4, 4, 3, 4], dtype='float32')
            variances = fluid.data(
                name='var', shape=[4, 4, 3, 4], dtype='float32')
            rois, roi_probs, rois_num = fluid.layers.generate_proposals(
                scores,
                bbox_deltas,
                im_info,
                anchors,
                variances,
                pre_nms_top_n=10,
                post_nms_top_n=5,
                return_rois_num=True)
            rois_stat, roi_probs_stat, rois_num_stat = self.get_static_graph_result(
                feed={
                    'scores': scores_np,
                    'bbox_deltas': bbox_deltas_np,
                    'im_info': im_info_np,
                    'anchors': anchors_np,
                    'var': variances_np
                },
                fetch_list=[rois, roi_probs, rois_num],
                with_lod=True)

        with self.dynamic_graph():
            scores_dy = base.to_variable(scores_np)
            bbox_deltas_dy = base.to_variable(bbox_deltas_np)
            im_info_dy = base.to_variable(im_info_np)
            anchors_dy = base.to_variable(anchors_np)
            variances_dy = base.to_variable(variances_np)
            rois, roi_probs, rois_num = fluid.layers.generate_proposals(
                scores_dy,
                bbox_deltas_dy,
                im_info_dy,
                anchors_dy,
                variances_dy,
                pre_nms_top_n=10,
                post_nms_top_n=5,
                return_rois_num=True)
            rois_dy = rois.numpy()
            roi_probs_dy = roi_probs.numpy()
            rois_num_dy = rois_num.numpy()

        self.assertTrue(np.array_equal(np.array(rois_stat), rois_dy))
        self.assertTrue(np.array_equal(np.array(roi_probs_stat), roi_probs_dy))
        self.assertTrue(np.array_equal(np.array(rois_num_stat), rois_num_dy))
605 606


D
dengkaipeng 已提交
607 608 609 610 611
class TestYoloDetection(unittest.TestCase):
    def test_yolov3_loss(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[30, 7, 7], dtype='float32')
612 613 614
            gt_box = layers.data(name='gt_box', shape=[10, 4], dtype='float32')
            gt_label = layers.data(name='gt_label', shape=[10], dtype='int32')
            gt_score = layers.data(name='gt_score', shape=[10], dtype='float32')
615 616
            loss = layers.yolov3_loss(
                x,
617 618
                gt_box,
                gt_label, [10, 13, 30, 13], [0, 1],
619 620 621
                10,
                0.7,
                32,
622
                gt_score=gt_score,
623
                use_label_smooth=False)
D
dengkaipeng 已提交
624 625 626

            self.assertIsNotNone(loss)

D
dengkaipeng 已提交
627 628 629 630
    def test_yolo_box(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[30, 7, 7], dtype='float32')
D
dengkaipeng 已提交
631
            img_size = layers.data(name='img_size', shape=[2], dtype='int32')
632 633
            boxes, scores = layers.yolo_box(x, img_size, [10, 13, 30, 13], 10,
                                            0.01, 32)
D
dengkaipeng 已提交
634 635 636
            self.assertIsNotNone(boxes)
            self.assertIsNotNone(scores)

637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
    def test_yolov3_loss_with_scale(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[30, 7, 7], dtype='float32')
            gt_box = layers.data(name='gt_box', shape=[10, 4], dtype='float32')
            gt_label = layers.data(name='gt_label', shape=[10], dtype='int32')
            gt_score = layers.data(name='gt_score', shape=[10], dtype='float32')
            loss = layers.yolov3_loss(
                x,
                gt_box,
                gt_label, [10, 13, 30, 13], [0, 1],
                10,
                0.7,
                32,
                gt_score=gt_score,
                use_label_smooth=False,
                scale_x_y=1.2)

            self.assertIsNotNone(loss)

    def test_yolo_box_with_scale(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[30, 7, 7], dtype='float32')
            img_size = layers.data(name='img_size', shape=[2], dtype='int32')
            boxes, scores = layers.yolo_box(
                x, img_size, [10, 13, 30, 13], 10, 0.01, 32, scale_x_y=1.2)
            self.assertIsNotNone(boxes)
            self.assertIsNotNone(scores)

D
dengkaipeng 已提交
667

J
jerrywgz 已提交
668 669 670 671 672 673 674 675 676 677
class TestBoxClip(unittest.TestCase):
    def test_box_clip(self):
        program = Program()
        with program_guard(program):
            input_box = layers.data(
                name='input_box', shape=[7, 4], dtype='float32', lod_level=1)
            im_info = layers.data(name='im_info', shape=[3], dtype='float32')
            out = layers.box_clip(input_box, im_info)
            self.assertIsNotNone(out)

J
jerrywgz 已提交
678

J
jerrywgz 已提交
679 680 681 682 683 684 685
class TestMulticlassNMS(unittest.TestCase):
    def test_multiclass_nms(self):
        program = Program()
        with program_guard(program):
            bboxes = layers.data(
                name='bboxes', shape=[-1, 10, 4], dtype='float32')
            scores = layers.data(name='scores', shape=[-1, 10], dtype='float32')
J
jerrywgz 已提交
686
            output = layers.multiclass_nms(bboxes, scores, 0.3, 400, 200, 0.7)
J
jerrywgz 已提交
687 688
            self.assertIsNotNone(output)

689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
    def test_multiclass_nms_error(self):
        program = Program()
        with program_guard(program):
            bboxes1 = fluid.data(
                name='bboxes1', shape=[10, 10, 4], dtype='int32')
            scores1 = fluid.data(
                name='scores1', shape=[10, 10], dtype='float32')
            bboxes2 = fluid.data(
                name='bboxes2', shape=[10, 10, 4], dtype='float32')
            scores2 = fluid.data(name='scores2', shape=[10, 10], dtype='int32')
            self.assertRaises(
                TypeError,
                layers.multiclass_nms,
                bboxes=bboxes1,
                scores=scores1,
                score_threshold=0.5,
                nms_top_k=400,
                keep_top_k=200)
            self.assertRaises(
                TypeError,
                layers.multiclass_nms,
                bboxes=bboxes2,
                scores=scores2,
                score_threshold=0.5,
                nms_top_k=400,
                keep_top_k=200)

J
jerrywgz 已提交
716

717 718 719 720 721 722 723
class TestMulticlassNMS2(unittest.TestCase):
    def test_multiclass_nms2(self):
        program = Program()
        with program_guard(program):
            bboxes = layers.data(
                name='bboxes', shape=[-1, 10, 4], dtype='float32')
            scores = layers.data(name='scores', shape=[-1, 10], dtype='float32')
724 725 726
            output = fluid.contrib.multiclass_nms2(bboxes, scores, 0.3, 400,
                                                   200, 0.7)
            output2, index = fluid.contrib.multiclass_nms2(
727 728 729 730 731 732
                bboxes, scores, 0.3, 400, 200, 0.7, return_index=True)
            self.assertIsNotNone(output)
            self.assertIsNotNone(output2)
            self.assertIsNotNone(index)


733
class TestCollectFpnPropsals(LayerTest):
734
    def test_collect_fpn_proposals(self):
735 736 737 738 739 740 741 742 743 744 745 746
        multi_bboxes_np = []
        multi_scores_np = []
        rois_num_per_level_np = []
        for i in range(4):
            bboxes_np = np.random.rand(5, 4).astype('float32')
            scores_np = np.random.rand(5, 1).astype('float32')
            rois_num = np.array([2, 3]).astype('int32')
            multi_bboxes_np.append(bboxes_np)
            multi_scores_np.append(scores_np)
            rois_num_per_level_np.append(rois_num)

        with self.static_graph():
747 748
            multi_bboxes = []
            multi_scores = []
749
            rois_num_per_level = []
750
            for i in range(4):
751
                bboxes = fluid.data(
752
                    name='rois' + str(i),
753
                    shape=[5, 4],
754
                    dtype='float32',
755 756
                    lod_level=1)
                scores = fluid.data(
757
                    name='scores' + str(i),
758
                    shape=[5, 1],
759
                    dtype='float32',
760 761 762 763
                    lod_level=1)
                rois_num = fluid.data(
                    name='rois_num' + str(i), shape=[None], dtype='int32')

764 765
                multi_bboxes.append(bboxes)
                multi_scores.append(scores)
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
                rois_num_per_level.append(rois_num)

            fpn_rois, rois_num = layers.collect_fpn_proposals(
                multi_bboxes,
                multi_scores,
                2,
                5,
                10,
                rois_num_per_level=rois_num_per_level)
            feed = {}
            for i in range(4):
                feed['rois' + str(i)] = multi_bboxes_np[i]
                feed['scores' + str(i)] = multi_scores_np[i]
                feed['rois_num' + str(i)] = rois_num_per_level_np[i]
            fpn_rois_stat, rois_num_stat = self.get_static_graph_result(
                feed=feed, fetch_list=[fpn_rois, rois_num], with_lod=True)
            fpn_rois_stat = np.array(fpn_rois_stat)
            rois_num_stat = np.array(rois_num_stat)

        with self.dynamic_graph():
            multi_bboxes_dy = []
            multi_scores_dy = []
            rois_num_per_level_dy = []
            for i in range(4):
                bboxes_dy = base.to_variable(multi_bboxes_np[i])
                scores_dy = base.to_variable(multi_scores_np[i])
                rois_num_dy = base.to_variable(rois_num_per_level_np[i])
                multi_bboxes_dy.append(bboxes_dy)
                multi_scores_dy.append(scores_dy)
                rois_num_per_level_dy.append(rois_num_dy)
            fpn_rois_dy, rois_num_dy = fluid.layers.collect_fpn_proposals(
                multi_bboxes_dy,
                multi_scores_dy,
                2,
                5,
                10,
                rois_num_per_level=rois_num_per_level_dy)
            fpn_rois_dy = fpn_rois_dy.numpy()
            rois_num_dy = rois_num_dy.numpy()

        self.assertTrue(np.array_equal(fpn_rois_stat, fpn_rois_dy))
        self.assertTrue(np.array_equal(rois_num_stat, rois_num_dy))
808

809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
    def test_collect_fpn_proposals_error(self):
        def generate_input(bbox_type, score_type, name):
            multi_bboxes = []
            multi_scores = []
            for i in range(4):
                bboxes = fluid.data(
                    name='rois' + name + str(i),
                    shape=[10, 4],
                    dtype=bbox_type,
                    lod_level=1)
                scores = fluid.data(
                    name='scores' + name + str(i),
                    shape=[10, 1],
                    dtype=score_type,
                    lod_level=1)
                multi_bboxes.append(bboxes)
                multi_scores.append(scores)
            return multi_bboxes, multi_scores

        program = Program()
        with program_guard(program):
            bbox1 = fluid.data(
                name='rois', shape=[5, 10, 4], dtype='float32', lod_level=1)
            score1 = fluid.data(
                name='scores', shape=[5, 10, 1], dtype='float32', lod_level=1)
            bbox2, score2 = generate_input('int32', 'float32', '2')
            self.assertRaises(
                TypeError,
                layers.collect_fpn_proposals,
                multi_rois=bbox1,
                multi_scores=score1,
                min_level=2,
                max_level=5,
                post_nms_top_n=2000)
            self.assertRaises(
                TypeError,
                layers.collect_fpn_proposals,
                multi_rois=bbox2,
                multi_scores=score2,
                min_level=2,
                max_level=5,
                post_nms_top_n=2000)

852

853
class TestDistributeFpnProposals(LayerTest):
854
    def test_distribute_fpn_proposals(self):
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
        rois_np = np.random.rand(10, 4).astype('float32')
        rois_num_np = np.array([4, 6]).astype('int32')
        with self.static_graph():
            rois = fluid.data(name='rois', shape=[10, 4], dtype='float32')
            rois_num = fluid.data(name='rois_num', shape=[None], dtype='int32')
            multi_rois, restore_ind, rois_num_per_level = layers.distribute_fpn_proposals(
                fpn_rois=rois,
                min_level=2,
                max_level=5,
                refer_level=4,
                refer_scale=224,
                rois_num=rois_num)
            fetch_list = multi_rois + [restore_ind] + rois_num_per_level
            output_stat = self.get_static_graph_result(
                feed={'rois': rois_np,
                      'rois_num': rois_num_np},
                fetch_list=fetch_list,
                with_lod=True)
            output_stat_np = []
            for output in output_stat:
                output_np = np.array(output)
                if len(output_np) > 0:
                    output_stat_np.append(output_np)

        with self.dynamic_graph():
            rois_dy = base.to_variable(rois_np)
            rois_num_dy = base.to_variable(rois_num_np)
            multi_rois_dy, restore_ind_dy, rois_num_per_level_dy = layers.distribute_fpn_proposals(
                fpn_rois=rois_dy,
884 885 886
                min_level=2,
                max_level=5,
                refer_level=4,
887 888
                refer_scale=224,
                rois_num=rois_num_dy)
H
hong 已提交
889
            print(type(multi_rois_dy))
890 891 892 893 894 895 896 897 898
            output_dy = multi_rois_dy + [restore_ind_dy] + rois_num_per_level_dy
            output_dy_np = []
            for output in output_dy:
                output_np = output.numpy()
                if len(output_np) > 0:
                    output_dy_np.append(output_np)

        for res_stat, res_dy in zip(output_stat_np, output_dy_np):
            self.assertTrue(np.array_equal(res_stat, res_dy))
899

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
    def test_distribute_fpn_proposals_error(self):
        program = Program()
        with program_guard(program):
            fpn_rois = fluid.data(
                name='data_error', shape=[10, 4], dtype='int32', lod_level=1)
            self.assertRaises(
                TypeError,
                layers.distribute_fpn_proposals,
                fpn_rois=fpn_rois,
                min_level=2,
                max_level=5,
                refer_level=4,
                refer_scale=224)


class TestBoxDecoderAndAssign(unittest.TestCase):
    def test_box_decoder_and_assign(self):
        program = Program()
        with program_guard(program):
            pb = fluid.data(name='prior_box', shape=[None, 4], dtype='float32')
            pbv = fluid.data(name='prior_box_var', shape=[4], dtype='float32')
            loc = fluid.data(
                name='target_box', shape=[None, 4 * 81], dtype='float32')
            scores = fluid.data(
                name='scores', shape=[None, 81], dtype='float32')
            decoded_box, output_assign_box = fluid.layers.box_decoder_and_assign(
                pb, pbv, loc, scores, 4.135)
            self.assertIsNotNone(decoded_box)
            self.assertIsNotNone(output_assign_box)

    def test_box_decoder_and_assign_error(self):
        def generate_input(pb_type, pbv_type, loc_type, score_type, name):
            pb = fluid.data(
                name='prior_box' + name, shape=[None, 4], dtype=pb_type)
            pbv = fluid.data(
                name='prior_box_var' + name, shape=[4], dtype=pbv_type)
            loc = fluid.data(
                name='target_box' + name, shape=[None, 4 * 81], dtype=loc_type)
            scores = fluid.data(
                name='scores' + name, shape=[None, 81], dtype=score_type)
            return pb, pbv, loc, scores

        program = Program()
        with program_guard(program):
            pb1, pbv1, loc1, scores1 = generate_input('int32', 'float32',
                                                      'float32', 'float32', '1')
            pb2, pbv2, loc2, scores2 = generate_input('float32', 'float32',
                                                      'int32', 'float32', '2')
            pb3, pbv3, loc3, scores3 = generate_input('float32', 'float32',
                                                      'float32', 'int32', '3')
            self.assertRaises(
                TypeError,
                layers.box_decoder_and_assign,
                prior_box=pb1,
                prior_box_var=pbv1,
                target_box=loc1,
                box_score=scores1,
                box_clip=4.0)
            self.assertRaises(
                TypeError,
                layers.box_decoder_and_assign,
                prior_box=pb2,
                prior_box_var=pbv2,
                target_box=loc2,
                box_score=scores2,
                box_clip=4.0)
            self.assertRaises(
                TypeError,
                layers.box_decoder_and_assign,
                prior_box=pb3,
                prior_box_var=pbv3,
                target_box=loc3,
                box_score=scores3,
                box_clip=4.0)

975

976
if __name__ == '__main__':
H
hong 已提交
977
    paddle.enable_static()
978
    unittest.main()