mlir_to_runtime_translate.cc 24.0 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/infrt/host_context/mlir_to_runtime_translate.h"

#include <llvm/Support/SourceMgr.h>
#include <mlir/Dialect/StandardOps/IR/Ops.h>
W
Wilber 已提交
19
#include <mlir/IR/BuiltinAttributes.h>
20 21
#include <mlir/IR/BuiltinOps.h>
#include <mlir/IR/BuiltinTypes.h>
Y
Yan Chunwei 已提交
22 23 24 25
#include <mlir/IR/Diagnostics.h>
#include <mlir/IR/OperationSupport.h>
#include <mlir/Parser.h>

W
Wilber 已提交
26
#include <glog/logging.h>
Y
Yan Chunwei 已提交
27 28 29 30 31 32 33 34 35
#include <iostream>
#include <memory>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>

#include "boost/optional.hpp"
#include "paddle/infrt/common/string.h"
36
#include "paddle/infrt/dialect/dense_tensor.h"
Y
Yan Chunwei 已提交
37 38 39 40 41 42 43 44 45 46
#include "paddle/infrt/dialect/mlir_loader.h"
#include "paddle/infrt/dialect/tensor_shape.h"
#include "paddle/infrt/host_context/core_runtime.h"
#include "paddle/infrt/host_context/kernel_frame.h"
#include "paddle/infrt/host_context/kernel_registry.h"
#include "paddle/infrt/host_context/mlir_function_executable.h"
#include "paddle/infrt/host_context/op_executable.h"
#include "paddle/infrt/host_context/value.h"
#include "paddle/infrt/tensor/tensor_shape.h"

W
Wilber 已提交
47 48 49 50 51 52 53
#ifdef INFRT_WITH_PHI
#ifdef INFRT_WITH_TRT
#include "paddle/infrt/kernel/tensorrt/trt_kernels.h"
#endif
#include "paddle/phi/core/dense_tensor.h"
#endif

54 55
namespace infrt {
namespace host_context {
Y
Yan Chunwei 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

template <typename T>
std::string DumpToString(T& op) {  // NOLINT
  std::string buffer;
  llvm::raw_string_ostream os(buffer);
  op.print(os);
  os.flush();
  return buffer;
}

struct MlirToRuntimeTranslator::Impl {
  mlir::ModuleOp module;
  // The runtime for a function call.
  CoreRuntimeBuilder* runtime{};
  // The current working op, the translator process the ops one by one, each
  // time it updates `cur_op` here to current op
  // working on.
  OpExecutableBuilder* cur_op{};

  // record the current function name.
  std::string cur_func_name;

  // Name to function definitions.
  std::unordered_map<std::string, mlir::FuncOp> func_defs;

  // Map from an operation to its results.
  std::unordered_map<const mlir::Operation*, std::vector<ValueRef>> op_results;
  llvm::DenseMap<mlir::Value, ValueRef> value_map;
};

bool MlirToRuntimeTranslator::EmitConstantOp(mlir::Operation* op) {
87
  if (!infrt::Startswith(op->getName().getStringRef().str(), "infrt.constant"))
Y
Yan Chunwei 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    return false;
  VLOG(3) << "Emitting constant op [" << op->getName().getStringRef().str()
          << "]";

  auto attr = op->getAttr("value");
  if (attr.isa<mlir::FloatAttr>()) {
    if (attr.getType().isF32()) {
      impl_->op_results[op] = {ValueRef(
          static_cast<float>(attr.cast<mlir::FloatAttr>().getValueAsDouble()))};
    } else if (attr.getType().isF64()) {
      impl_->op_results[op] = {ValueRef(static_cast<double>(
          attr.cast<mlir::FloatAttr>().getValueAsDouble()))};
    } else {
      LOG(FATAL) << "Not supported attribute type";
    }
    return true;
  }

  if (attr.isa<mlir::IntegerAttr>()) {
    if (attr.getType().isInteger(32)) {
      impl_->op_results[op] = {ValueRef(
          static_cast<int32_t>(attr.cast<mlir::IntegerAttr>().getSInt()))};
    } else if (attr.getType().isInteger(64)) {
      impl_->op_results[op] = {ValueRef(
          static_cast<int64_t>(attr.cast<mlir::IntegerAttr>().getSInt()))};
    } else if (attr.getType().isInteger(1)) {
      impl_->op_results[op] = {
          ValueRef(static_cast<bool>(attr.cast<mlir::IntegerAttr>().getInt()))};
    } else {
      LOG(FATAL) << "Not supported attribute type";
    }
    return true;
  }

  LOG(FATAL) << "Not supported constant attribute type";
  return true;
}

template <>
boost::optional<int32_t> MlirToRuntimeTranslator::EmitAttribute(
128 129 130 131
    const mlir::Attribute& attr) {
  if (!attr.isa<mlir::IntegerAttr>()) return boost::none;
  if (attr.isa<mlir::IntegerAttr>()) {
    auto val = attr.cast<mlir::IntegerAttr>();
Y
Yan Chunwei 已提交
132 133 134 135 136 137 138 139
    if (val.getType().isInteger(32)) {
      return val.getInt();
    }
  }
  return boost::none;
}
template <>
boost::optional<int64_t> MlirToRuntimeTranslator::EmitAttribute(
140 141 142 143
    const mlir::Attribute& attr) {
  if (!attr.isa<mlir::IntegerAttr>()) return boost::none;
  if (attr.isa<mlir::IntegerAttr>()) {
    auto val = attr.cast<mlir::IntegerAttr>();
Y
Yan Chunwei 已提交
144 145 146 147 148 149 150 151 152 153
    if (val.getType().isInteger(64)) {
      return val.getInt();
    }
  }
  return boost::none;
}

// TODO(Superjomn) Make double and float parsing share some thing.
template <>
boost::optional<float> MlirToRuntimeTranslator::EmitAttribute(
154 155 156 157
    const mlir::Attribute& attr) {
  if (!attr.isa<mlir::FloatAttr>()) return boost::none;
  if (attr.isa<mlir::FloatAttr>()) {
    auto val = attr.cast<mlir::FloatAttr>();
Y
Yan Chunwei 已提交
158 159 160 161 162
    if (val.getType().isF32()) return val.getValueAsDouble();
  }
  return boost::none;
}

163 164 165 166 167 168 169 170 171 172 173
template <>
boost::optional<bool> MlirToRuntimeTranslator::EmitAttribute(
    const mlir::Attribute& attr) {
  if (!attr.isa<mlir::BoolAttr>()) return boost::none;
  if (attr.isa<mlir::BoolAttr>()) {
    auto val = attr.cast<mlir::BoolAttr>();
    return val.getValue();
  }
  return boost::none;
}

Y
Yan Chunwei 已提交
174 175
template <>
boost::optional<double> MlirToRuntimeTranslator::EmitAttribute(
176 177 178 179
    const mlir::Attribute& attr) {
  if (!attr.isa<mlir::FloatAttr>()) return boost::none;
  if (attr.isa<mlir::FloatAttr>()) {
    auto val = attr.cast<mlir::FloatAttr>();
Y
Yan Chunwei 已提交
180 181 182 183 184
    if (val.getType().isF64()) return val.getValueAsDouble();
  }
  return boost::none;
}

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
template <>
boost::optional<::infrt::TargetType> MlirToRuntimeTranslator::EmitAttribute(
    const mlir::Attribute& attr) {
  if (!attr.isa<::infrt::TargetAttr>()) return boost::none;
  if (attr.isa<::infrt::TargetAttr>()) {
    return attr.cast<::infrt::TargetAttr>().getTarget();
  }
  return boost::none;
}

template <>
boost::optional<::infrt::LayoutType> MlirToRuntimeTranslator::EmitAttribute(
    const mlir::Attribute& attr) {
  if (!attr.isa<::infrt::LayoutAttr>()) return boost::none;
  if (attr.isa<::infrt::LayoutAttr>()) {
    return attr.cast<::infrt::LayoutAttr>().getLayout();
  }
  return boost::none;
}

template <>
boost::optional<::infrt::PrecisionType> MlirToRuntimeTranslator::EmitAttribute(
    const mlir::Attribute& attr) {
  if (!attr.isa<::infrt::PrecisionAttr>()) return boost::none;
  if (attr.isa<::infrt::PrecisionAttr>()) {
    return attr.cast<::infrt::PrecisionAttr>().getPrecision();
  }
  return boost::none;
}

Y
Yan Chunwei 已提交
215 216
template <>
boost::optional<std::string> MlirToRuntimeTranslator::EmitAttribute(
217 218 219
    const mlir::Attribute& attr) {
  if (!attr.isa<mlir::StringAttr>()) return boost::none;
  return attr.cast<mlir::StringAttr>().getValue().str();
Y
Yan Chunwei 已提交
220 221 222 223 224
}

#define PROCESS_ARRAY_INT(type__, bits__)                                      \
  template <>                                                                  \
  boost::optional<std::vector<type__>> MlirToRuntimeTranslator::EmitAttribute( \
225 226 227
      const mlir::Attribute& attr) {                                           \
    if (!attr.isa<mlir::ArrayAttr>()) return boost::none;                      \
    auto array = attr.cast<mlir::ArrayAttr>();                                 \
Y
Yan Chunwei 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240
    CHECK(!array.empty());                                                     \
                                                                               \
    if (!array[0].getType().isInteger(bits__)) {                               \
      return boost::none;                                                      \
    }                                                                          \
                                                                               \
    std::vector<type__> res;                                                   \
    for (auto& v : array) {                                                    \
      res.push_back(v.cast<mlir::IntegerAttr>().getInt());                     \
    }                                                                          \
    return res;                                                                \
  }

241
PROCESS_ARRAY_INT(bool, 1);
Y
Yan Chunwei 已提交
242 243 244 245 246 247
PROCESS_ARRAY_INT(int16_t, 16);
PROCESS_ARRAY_INT(int32_t, 32);
PROCESS_ARRAY_INT(int64_t, 64);

template <>
boost::optional<std::vector<float>> MlirToRuntimeTranslator::EmitAttribute(
248 249 250
    const mlir::Attribute& attr) {
  if (!attr.isa<mlir::ArrayAttr>()) return boost::none;
  auto array = attr.cast<mlir::ArrayAttr>();
Y
Yan Chunwei 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263
  CHECK(!array.empty());

  if (!array[0].getType().isF32()) return boost::none;

  std::vector<float> res;
  for (auto& v : array) {
    res.push_back(v.cast<mlir::FloatAttr>().getValueAsDouble());
  }
  return res;
}

template <>
boost::optional<std::vector<double>> MlirToRuntimeTranslator::EmitAttribute(
264 265 266
    const mlir::Attribute& attr) {
  if (!attr.isa<mlir::ArrayAttr>()) return boost::none;
  auto array = attr.cast<mlir::ArrayAttr>();
Y
Yan Chunwei 已提交
267 268 269 270 271 272 273 274 275 276 277 278
  CHECK(!array.empty());

  if (!array[0].getType().isF64()) return boost::none;

  std::vector<double> res;
  for (auto& v : array) {
    res.push_back(v.cast<mlir::FloatAttr>().getValueAsDouble());
  }
  return res;
}

static bool IsReturn(mlir::Operation* op) {
279
  return op->getName().getStringRef() == "infrt.return";
Y
Yan Chunwei 已提交
280 281
}

282 283
bool MlirToRuntimeTranslator::EmitGeneralOp(
    mlir::Operation* op, const KernelRegistry& kernel_registry) {
Y
Yan Chunwei 已提交
284 285 286 287 288
  CHECK(impl_->runtime);
  impl_->cur_op =
      impl_->runtime->NewOpExecutable(op->getName().getStringRef().str());

  VLOG(3) << "processing general op : " << op->getName().getStringRef().str();
W
Wilber 已提交
289 290 291 292 293 294 295 296 297 298 299 300
  // TODO(wilber): Find a more appropriate way to handle special cases.
  if (op->getName().getStringRef() == "trt.create_engine") {
#ifdef INFRT_WITH_TRT
    auto* symbols = impl_->runtime->symbol_table();
    ::infrt::kernel::tensorrt::MlirOperationWithInfrtSymbol mlir_operation;
    mlir_operation.operation = op;
    mlir_operation.symbol_table = symbols;
    impl_->cur_op->AppendArgument(new Value(mlir_operation));
    // TODO(wilber): how to pass DenseTensor to create_engine op? temporialiy
    // add a naive implement.
    for (int i = 0, e = op->getNumOperands(); i < e; ++i) {
      auto operand = op->getOperand(i);
W
Wilber 已提交
301
      Value* arg_value{nullptr};
W
Wilber 已提交
302 303
      if (operand.isa<mlir::BlockArgument>()) {
        mlir::BlockArgument arg = operand.dyn_cast<mlir::BlockArgument>();
W
Wilber 已提交
304 305 306 307 308 309
        arg_value = GetValue(arg);
      } else {
        arg_value = GetValue(operand);
        if (!arg_value) {
          auto upstream_op = operand.getDefiningOp();
          arg_value = GetOpResult(upstream_op);
W
Wilber 已提交
310 311
        }
      }
W
Wilber 已提交
312 313 314 315
      if (arg_value->is_type<phi::DenseTensor>()) {
        impl_->runtime->FeedInArgs(
            std::make_pair(std::to_string(i), ValueRef(arg_value)));
      }
W
Wilber 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
    }
#else
    CHECK(false) << "should not reach here";
#endif
  } else {
    // process operands
    for (int i = 0, e = op->getNumOperands(); i < e; i++) {
      // function argument as value
      auto operand = op->getOperand(i);
      /// if (operand.getKind() == mlir::Value::Kind::BlockArgument) {
      if (operand.isa<mlir::BlockArgument>()) {
        mlir::BlockArgument arg = operand.dyn_cast<mlir::BlockArgument>();
        Value* arg_value = GetValue(arg);
        impl_->cur_op->AppendArgument(arg_value);
        VLOG(3) << "* op mlir operand: " << DumpToString(arg) << " "
                << GetValue(arg);
        continue;
      }
Y
Yan Chunwei 已提交
334

W
Wilber 已提交
335 336 337 338 339 340 341 342
      // normal value
      Value* arg_value = GetValue(operand);
      if (!arg_value) {
        auto upstream_op = operand.getDefiningOp();
        arg_value = GetOpResult(upstream_op);
      }
      CHECK(arg_value) << "No-exist argument value found: "
                       << DumpToString(operand);
Y
Yan Chunwei 已提交
343 344
      impl_->cur_op->AppendArgument(arg_value);

W
Wilber 已提交
345 346
      VLOG(3) << "* op mlir operand: " << DumpToString(operand) << " "
              << GetValue(operand) << " vs " << arg_value;
Y
Yan Chunwei 已提交
347 348 349 350 351 352
    }
  }

  // process attributes
  auto attrs = op->getAttrs();

353
  // MLIR's underlying attr storage type is `Builtin_Dictionary`, and its
354 355
  // elements are sorted by name. The following code adapts the order of
  // function signatures of the phi operator library.
356 357 358 359
  llvm::SmallVector<Value*, 4> tmp;
  tmp.resize(attrs.size());
  const std::string& kernel_name = op->getName().getStringRef().str();
  const auto& attr_names = kernel_registry.GetAttrNameList(kernel_name);
360 361 362 363 364 365 366 367 368 369 370 371
  if (attrs.size()) {
    if (attr_names.empty()) {
      LOG(WARNING) << "The kernel `" << kernel_name
                   << "` has not been registered with "
                      "`KernelRegistry::AddKernelWithAttrs()`.";
    } else {
      CHECK_EQ(attr_names.size(), attrs.size())
          << "The number of kernel `" << kernel_name
          << "` attributes specified by mlir (" << attrs.size()
          << ") is inconsistent with the registration (" << attr_names.size()
          << ").";
    }
372
  }
373

374 375 376 377 378 379 380 381 382 383 384 385 386 387
  auto get_offset = [](const char* attr,
                       const std::vector<const char*>& names,
                       const std::string& kernel_name) -> int {
    for (size_t i = 0; i < names.size(); ++i) {
      if (!std::strcmp(attr, names[i])) {
        return i;
      }
    }
    LOG(WARNING) << "The attribute `" << attr << "` of kernel `" << kernel_name
                 << "` is not properly registered with "
                    "`KernelRegistry::AddKernelWithAttrs()`.";
    return -1;
  };

Y
Yan Chunwei 已提交
388 389
  for (size_t i = 0; i < attrs.size(); i++) {
    auto& attr = attrs[i];
390 391 392 393 394 395
    int offset{};
    if (attr_names.size()) {
      offset = get_offset(attr.getName().data(), attr_names, kernel_name);
    } else {
      offset = i;
    }
396
    CHECK_GT(offset, -1);
397
    if (auto v = EmitAttribute<int32_t>(attr.getValue())) {
398
      tmp[offset] = new Value(*v);
399
    } else if (auto v = EmitAttribute<int64_t>(attr.getValue())) {
400
      tmp[offset] = new Value(*v);
401
    } else if (auto v = EmitAttribute<float>(attr.getValue())) {
402
      tmp[offset] = new Value(*v);
403
    } else if (auto v = EmitAttribute<double>(attr.getValue())) {
404
      tmp[offset] = new Value(*v);
405
    } else if (auto v = EmitAttribute<std::string>(attr.getValue())) {
406
      tmp[offset] = new Value(std::move(*v));
407
    } else if (auto v = EmitAttribute<bool>(attr.getValue())) {
408
      tmp[offset] = new Value(*v);
409
    } else if (auto v = EmitAttribute<::infrt::TargetType>(attr.getValue())) {
410
      tmp[offset] = new Value(*v);
411 412
    } else if (auto v =
                   EmitAttribute<::infrt::PrecisionType>(attr.getValue())) {
413
      tmp[offset] = new Value(*v);
414
    } else if (auto v = EmitAttribute<::infrt::LayoutType>(attr.getValue())) {
415
      tmp[offset] = new Value(*v);
416
    } else if (auto v = EmitAttribute<std::vector<int16_t>>(attr.getValue())) {
417
      tmp[offset] = new Value(std::move(*v));
418
    } else if (auto v = EmitAttribute<std::vector<int32_t>>(attr.getValue())) {
419
      tmp[offset] = new Value(std::move(*v));
420
    } else if (auto v = EmitAttribute<std::vector<int64_t>>(attr.getValue())) {
421
      tmp[offset] = new Value(std::move(*v));
422
    } else if (auto v = EmitAttribute<std::vector<float>>(attr.getValue())) {
423
      tmp[offset] = new Value(std::move(*v));
424
    } else if (auto v = EmitAttribute<std::vector<double>>(attr.getValue())) {
425
      tmp[offset] = new Value(std::move(*v));
Y
Yan Chunwei 已提交
426 427 428 429 430
    } else {
      LOG(FATAL) << "Not supported attribute type";
    }
  }

431 432 433 434
  for (size_t i = 0; i < tmp.size(); i++) {
    impl_->cur_op->AppendAttribute(tmp[i]);
  }

Y
Yan Chunwei 已提交
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
  // process regions, we treat regions as attribute.
  auto num_regions = op->getNumRegions();
  if (num_regions > 0) {
    CHECK_EQ(num_regions, 1UL)
        << "op with more than one region is not supported yet.";
    auto& region = op->getRegions().front();
    auto num_blocks = region.getBlocks().size();
    CHECK_EQ(num_blocks, 1UL)
        << "region with more than one block is not supported yet.";

    // process arguments
    llvm::SmallVector<mlir::Type, 4> inputs;
    auto& block = region.getBlocks().front();
    for (auto arg : block.getArguments()) inputs.push_back(arg.getType());

    // process results
    // NOTE: if an op contains a region, we simply ignore the region's return
    // values,
    //       or its return values will conflict with op's return values.
    llvm::SmallVector<mlir::Type, 0> results;

    auto func_type =
457
        mlir::FunctionType::get(region.getContext(), inputs, results);
Y
Yan Chunwei 已提交
458 459 460 461 462
    auto* function = impl_->cur_op->CreateFunctionExecutable(
        &region, func_type, &impl_->func_defs);
    impl_->cur_op->AppendAttribute(new Value(function));
  }

W
Wilber 已提交
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
  // process results
  llvm::SmallVector<Value*, 4> res_values;
  for (int i = 0, e = op->getNumResults(); i < e; i++) {
    auto res = op->getResult(i);
    if (res.getType().isa<::infrt::DenseTensorType>()) {
      auto r = impl_->value_map.try_emplace(
          res, ValueRef(new Value{::phi::DenseTensor()}));
      CHECK(r.second) << "Duplicate add mlir value [" << DumpToString(res)
                      << "]";
      res_values.push_back(r.first->second.get());
    } else {
      res_values.push_back(AddValue(res));
    }

    VLOG(3) << "* op mlir res: " << DumpToString(res) << " " << GetValue(res);
  }
  impl_->cur_op->SetResults(res_values);

#ifdef INFRT_DEBUG
  {
    VLOG(3) << "check result";
    for (int i = 0; i < impl_->cur_op->frame().GetNumResults(); i++) {
      VLOG(3) << "+ res value: " << impl_->cur_op->frame().GetResults()[i];
    }
  }
#endif

Y
Yan Chunwei 已提交
490 491 492 493 494 495
  return true;
}

bool MlirToRuntimeTranslator::EmitReturnOp(
    mlir::Operation* op, llvm::SmallVectorImpl<mlir::Value>* results) {
  CHECK(results);
496
  if (op->getName().getStringRef() == "infrt.return") {
Y
Yan Chunwei 已提交
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
    for (size_t i = 0; i < op->getNumOperands(); i++) {
      results->push_back(op->getOperand(i));
    }

    return true;
  }
  return false;
}

bool MlirToRuntimeTranslator::EmitFunctions() {
  for (auto func_op : impl_->module.getOps<mlir::FuncOp>()) {
    EmitFunction(func_op);
  }
  return true;
}

void MlirToRuntimeTranslator::EmitFunction(mlir::FuncOp op) {
  impl_->func_defs[op.getName().str()] = op;
}

Value* MlirToRuntimeTranslator::GetOpResult(mlir::Operation* op) {
  auto it = impl_->op_results.find(op);
  return it == impl_->op_results.end() ? nullptr : it->second.front().get();
}

Value* MlirToRuntimeTranslator::GetValue(mlir::Value value) {
  auto it = impl_->value_map.find(value);
  return it == impl_->value_map.end() ? nullptr : it->second.get();
}

Value* MlirToRuntimeTranslator::AddValue(mlir::Value value) {
  auto res = impl_->value_map.try_emplace(value, ValueRef(new Value));
  CHECK(res.second) << "Duplicate add mlir value [" << DumpToString(value)
                    << "]";
  return res.first->second.get();
}

MlirToRuntimeTranslator::~MlirToRuntimeTranslator() {}

void MlirToRuntimeTranslator::UpdateCurFuncName(const std::string& name) {
  impl_->cur_func_name = std::string(name);
}

MlirToRuntimeTranslator::MlirToRuntimeTranslator(mlir::ModuleOp module,
                                                 CoreRuntimeBuilder* runtime)
    : impl_(new Impl) {
  CHECK(runtime);
  impl_->module = module;
  impl_->runtime = runtime;
}

bool MlirToRuntimeTranslator::EmitBuildShapeOp(mlir::Operation* op) {
  if (op->getName().getStringRef() != "ts.build_shape") return false;

  auto value = op->getAttr("value");

  CHECK(value.isa<mlir::ArrayAttr>());
  auto values = value.cast<mlir::ArrayAttr>().getValue();
  std::vector<int64_t> dims;
  for (auto& attr_v : values) {
    dims.push_back(attr_v.cast<mlir::IntegerAttr>().getInt());
  }
  impl_->op_results[op] = {
      ValueRef(new Value(tensor::TensorShape(llvm::ArrayRef<int64_t>(dims))))};

  return true;
}

bool MlirToRuntimeTranslator::EmitCallOp(mlir::Operation* op,
                                         function_defs_t* function_table) {
  CHECK(op);
  CHECK(function_table);
569
  if (op->getName().getStringRef() != "infrt.call") return false;
Y
Yan Chunwei 已提交
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602

  impl_->cur_op =
      impl_->runtime->NewOpExecutable(op->getName().getStringRef().str());

  auto callee = op->getAttr("callee");
  auto callee_name = callee.dyn_cast<mlir::FlatSymbolRefAttr>();

  // process arguments
  for (size_t i = 0; i < op->getNumOperands(); i++) {
    auto operand = op->getOperand(i);
    auto* arg_value = GetValue(operand);

    if (!arg_value) {
      auto upstream_op = operand.getDefiningOp();
      arg_value = GetOpResult(upstream_op);
    }
    CHECK(arg_value) << "No-exist argument value found: "
                     << DumpToString(operand);
    impl_->cur_op->AppendArgument(arg_value);
  }

  // process attribute
  auto& table = function_table ? *function_table : impl_->func_defs;
  {
    // lookup the callee function
    auto it = table.find(callee_name.getValue().str());
    CHECK(it != table.end()) << "can't find function ["
                             << callee_name.getValue().str() << "]";
    auto* function =
        impl_->cur_op->CreateFunctionExecutable(it->second, &impl_->func_defs);
    impl_->cur_op->AppendAttribute(new Value(function));
  }

603 604 605 606 607 608 609 610
  // process results
  llvm::SmallVector<Value*, 4> res_values;
  for (int i = 0, e = op->getNumResults(); i < e; i++) {
    auto res = op->getResult(i);
    res_values.push_back(AddValue(res));
  }
  impl_->cur_op->SetResults(res_values);

Y
Yan Chunwei 已提交
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
  VLOG(3) << "Emit call " << callee_name.getValue().str() << " "
          << impl_->cur_op->frame();
  return true;
}

MlirToRuntimeTranslator::MlirToRuntimeTranslator(CoreRuntimeBuilder* runtime)
    : impl_(new Impl) {
  CHECK(runtime);
  impl_->runtime = runtime;
}

Value* MlirToRuntimeTranslator::AddValue(mlir::Value mlir_value, Value* value) {
  auto it = impl_->value_map.try_emplace(mlir_value, ValueRef(value));
  CHECK(it.second) << "duplicate add value " << DumpToString(mlir_value);
  return value;
}

void MlirToRuntimeTranslate(mlir::ModuleOp module,
                            CoreRuntimeBuilder* runtime) {
  MlirToRuntimeTranslator(module, runtime).Run();
}

/**
 * Execute the mlir program in test mode -- print some debug information to
 * stdout.
 */
class MlirProgramTestExecutor : public MlirToRuntimeTranslator {
 public:
  CoreRuntimeBuilder core_runtime;

  MlirProgramTestExecutor(mlir::ModuleOp module, KernelRegistry* registry)
      : MlirToRuntimeTranslator(module, &core_runtime),
        core_runtime(registry),
        registry(registry) {
    CHECK(registry);
  }

  void Run() {
    EmitFunctions();

    CHECK(registry);
    for (auto func_op : impl_->module.getOps<mlir::FuncOp>()) {
      VLOG(3) << "Running function " << func_op.getName().str();
      EmitAndRunFuncWithoutArguments(func_op);
    }
  }

 protected:
  std::unordered_map<std::string, mlir::FuncOp> func_def_table;

  void EmitFunction(mlir::FuncOp op) override {
    CHECK(!impl_->func_defs.count(op.getName().str()))
        << "Duplicate function defition found for function ["
        << op.getName().str();
    impl_->func_defs.emplace(op.getName().str(), op);
  }

 private:
  void EmitAndRunFuncWithoutArguments(mlir::FuncOp func) {
    // print the function name for llvm FileChecker macro, CHECK-LABEL
    std::cout << '@' << func.getName().str() << std::endl;
    if (func.getNumArguments() ==
        0) {  // an entry function, execute it immediately
      VLOG(3) << "executing function " << func.getName().str();
      // Emit and execute each function
      CoreRuntimeBuilder runtime(registry);
      impl_->runtime = &runtime;

      auto& blocks = func.getBlocks();
      CHECK_EQ(blocks.size(), 1UL)
          << "function with more than one block is not supported yet";

      for (auto& op : blocks.front()) {
        if (EmitConstantOp(&op)) continue;
        if (EmitBuildShapeOp(&op)) continue;
        llvm::SmallVector<mlir::Value, 3> results;
        if (EmitReturnOp(&op, &results)) continue;
        if (EmitCallOp(&op, &impl_->func_defs)) continue;
689
        if (EmitGeneralOp(&op, *registry)) continue;
Y
Yan Chunwei 已提交
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
        LOG(FATAL) << "Not supported op: " << DumpToString(op);
      }

      runtime.Execute();

    } else {
      VLOG(2) << "get an callable function: " << func.getName().str();
    }
  }

 private:
  KernelRegistry* registry{};
};

void TestMlir(mlir::ModuleOp module, KernelRegistry* registry) {
  MlirProgramTestExecutor execute(module, registry);
  execute.Run();
}

709 710
}  // namespace host_context
}  // namespace infrt