conv_op_xpu.cc 7.8 KB
Newer Older
X
xiaoting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/conv_op.h"
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
#ifdef PADDLE_WITH_XPU
namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class GemmConvXPUKernel : public framework::OpKernel<T> {
22 23
  using XPUT = typename XPUTypeTrait<T>::Type;

X
xiaoting 已提交
24
 public:
25 26
  void Compute(const framework::ExecutionContext &context) const override {
    const Tensor *input = context.Input<Tensor>("Input");
X
xiaoting 已提交
27 28 29 30
    // The filter will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
31
    Tensor *output = context.Output<Tensor>("Output");
X
xiaoting 已提交
32 33 34 35 36
    output->mutable_data<T>(context.GetPlace());
    int groups = context.Attr<int>("groups");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
37 38 39 40 41 42 43 44 45
    const std::string data_format = context.Attr<std::string>("data_format");
    const std::string padding_algorithm =
        context.Attr<std::string>("padding_algorithm");

    PADDLE_ENFORCE_EQ(data_format == "NHWC" || data_format == "NDHWC", false,
                      platform::errors::InvalidArgument(
                          ("XPU do support data_format is NCHW in conv op.")));

    framework::DDim in_data_dims =
46
        phi::slice_ddim(input->dims(), 2, input->dims().size());
47
    framework::DDim filter_data_dims =
48 49
        phi::slice_ddim(filter.dims(), 2, filter.dims().size());
    std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
50 51 52
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

X
xiaoting 已提交
53 54 55 56 57
    const int batch_size = static_cast<int>(input->dims()[0]);
    const int img_c = static_cast<int>(input->dims()[1]);
    const int img_h = static_cast<int>(input->dims()[2]);
    const int img_w = static_cast<int>(input->dims()[3]);
    const int f = static_cast<int>(filter.dims()[0]);
58 59 60 61 62 63 64 65 66 67

    const XPUT *input_data = reinterpret_cast<const XPUT *>(input->data<T>());
    const XPUT *filter_data = reinterpret_cast<const XPUT *>(filter.data<T>());
    XPUT *output_data = reinterpret_cast<XPUT *>(output->data<T>());

    auto &dev_ctx = context.template device_context<DeviceContext>();
    int r = xpu::conv2d<XPUT, XPUT, XPUT, int16_t>(
        dev_ctx.x_context(), input_data, filter_data, output_data, batch_size,
        img_c, img_h, img_w, f, ksize, strides, paddings, dilations, groups,
        nullptr, nullptr, nullptr, true);
68 69 70 71
    PADDLE_ENFORCE_EQ(
        r, XPU_SUCCESS,
        platform::errors::External("XPU conv kernel return wrong value[%d %s]",
                                   r, XPUAPIErrorMsg[r]));
X
xiaoting 已提交
72 73
  }
};
74

X
xiaoting 已提交
75 76
template <typename DeviceContext, typename T>
class GemmConvGradXPUKernel : public framework::OpKernel<T> {
77 78
  using XPUT = typename XPUTypeTrait<T>::Type;

X
xiaoting 已提交
79
 public:
80 81 82
  void Compute(const framework::ExecutionContext &context) const override {
    const Tensor *input = context.Input<Tensor>("Input");
    const Tensor *output_grad =
X
xiaoting 已提交
83
        context.Input<Tensor>(framework::GradVarName("Output"));
84
    Tensor *input_grad =
X
xiaoting 已提交
85
        context.Output<Tensor>(framework::GradVarName("Input"));
86
    Tensor *filter_grad =
X
xiaoting 已提交
87 88 89 90 91 92 93 94 95 96
        context.Output<Tensor>(framework::GradVarName("Filter"));
    // The filter and filter_grad will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
    if (!input_grad && !filter_grad) return;
    int groups = context.Attr<int>("groups");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
97 98 99 100 101 102 103 104 105 106
    const std::string data_format = context.Attr<std::string>("data_format");
    const std::string padding_algorithm =
        context.Attr<std::string>("padding_algorithm");

    PADDLE_ENFORCE_EQ(
        data_format == "NHWC" || data_format == "NDHWC", false,
        platform::errors::InvalidArgument(
            ("XPU do support data_format is NCHW in conv grad op.")));

    framework::DDim in_data_dims =
107
        phi::slice_ddim(input->dims(), 2, input->dims().size());
108
    framework::DDim filter_data_dims =
109 110
        phi::slice_ddim(filter.dims(), 2, filter.dims().size());
    std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
111 112 113
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

X
xiaoting 已提交
114 115 116 117 118
    const int batch_size = static_cast<int>(input->dims()[0]);
    const int img_c = static_cast<int>(input->dims()[1]);
    const int img_h = static_cast<int>(input->dims()[2]);
    const int img_w = static_cast<int>(input->dims()[3]);
    const int f = static_cast<int>(filter.dims()[0]);
119 120 121 122 123 124

    const XPUT *input_data = reinterpret_cast<const XPUT *>(input->data<T>());
    const XPUT *filter_data = reinterpret_cast<const XPUT *>(filter.data<T>());
    const XPUT *output_grad_data =
        reinterpret_cast<const XPUT *>(output_grad->data<T>());
    XPUT *input_grad_data = nullptr;
X
xiaoting 已提交
125 126
    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
127
      input_grad_data = reinterpret_cast<XPUT *>(input_grad->data<T>());
X
xiaoting 已提交
128
    }
129
    XPUT *filter_grad_data = nullptr;
X
xiaoting 已提交
130 131
    if (filter_grad) {
      filter_grad->mutable_data<T>(context.GetPlace());
132
      filter_grad_data = reinterpret_cast<XPUT *>(filter_grad->data<T>());
X
xiaoting 已提交
133
    }
134 135 136 137 138 139
    auto &dev_ctx = context.template device_context<DeviceContext>();
    int r = xpu::conv2d_grad<XPUT, XPUT, XPUT, int16_t>(
        dev_ctx.x_context(), input_data, filter_data, output_grad_data,
        input_grad_data, filter_grad_data, batch_size, img_c, img_h, img_w, f,
        ksize, strides, paddings, dilations, groups, nullptr, nullptr, nullptr,
        nullptr, nullptr, true);
140 141 142 143
    PADDLE_ENFORCE_EQ(
        r, XPU_SUCCESS,
        platform::errors::External("XPU conv kernel return wrong value[%d %s]",
                                   r, XPUAPIErrorMsg[r]));
X
xiaoting 已提交
144 145 146 147 148 149
  }
};
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
150 151 152
    conv2d, ops::GemmConvXPUKernel<paddle::platform::XPUDeviceContext, float>,
    ops::GemmConvXPUKernel<paddle::platform::XPUDeviceContext,
                           paddle::platform::float16>);
X
xiaoting 已提交
153 154
REGISTER_OP_XPU_KERNEL(
    conv2d_grad,
155 156 157 158 159 160 161 162
    ops::GemmConvGradXPUKernel<paddle::platform::XPUDeviceContext, float>,
    ops::GemmConvGradXPUKernel<paddle::platform::XPUDeviceContext,
                               paddle::platform::float16>);
REGISTER_OP_XPU_KERNEL(
    depthwise_conv2d,
    ops::GemmConvXPUKernel<paddle::platform::XPUDeviceContext, float>,
    ops::GemmConvXPUKernel<paddle::platform::XPUDeviceContext,
                           paddle::platform::float16>);
163 164
REGISTER_OP_XPU_KERNEL(
    depthwise_conv2d_grad,
165 166 167
    ops::GemmConvGradXPUKernel<paddle::platform::XPUDeviceContext, float>,
    ops::GemmConvGradXPUKernel<paddle::platform::XPUDeviceContext,
                               paddle::platform::float16>);
X
xiaoting 已提交
168
#endif