fleet.cc 27.9 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16 17
#include "paddle/fluid/distributed/ps/wrapper/fleet.h"
#include "paddle/fluid/distributed/ps/service/communicator/communicator.h"
#include "paddle/fluid/distributed/ps/table/table.h"
T
tangwei12 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

namespace paddle {
namespace distributed {

using framework::LoDTensor;
using framework::ProgramDesc;
using framework::VarDesc;
using framework::Variable;

const uint32_t MAX_FEASIGN_NUM = 1024 * 100 * 100;
std::shared_ptr<FleetWrapper> FleetWrapper::s_instance_ = NULL;
bool FleetWrapper::is_initialized_ = false;

std::shared_ptr<paddle::distributed::PSCore> FleetWrapper::pserver_ptr_ = NULL;

Y
yaoxuefeng 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
void FleetWrapper::Stop() { StopServer(); }

void FleetWrapper::Load(WrapperContext& context) {
  auto table_id = context.table_id;
  if (table_id >= 0 && context.meta != "") {
    LoadSparseOnServer(context.path, context.meta, context.table_id);
    return;
  }
  if (table_id < 0) {  // laod all
    LoadModel(context.path, context.mode);
  } else {  // load one table
    LoadModelOneTable(table_id, context.path, context.mode);
  }
  return;
}

void FleetWrapper::Save(WrapperContext& context) {
  auto table_id = context.table_id;
  if (table_id < 0) {
    SaveModel(context.path, context.mode);
  } else {
    SaveModelOneTable(table_id, context.path, context.mode);
  }
  return;
}

T
tangwei12 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
void FleetWrapper::SetClient2ClientConfig(int request_timeout_ms,
                                          int connect_timeout_ms,
                                          int max_retry) {
  client2client_request_timeout_ms_ = request_timeout_ms;
  client2client_connect_timeout_ms_ = connect_timeout_ms;
  client2client_max_retry_ = max_retry;
}

void FleetWrapper::LoadSparseOnServer(const std::string& path,
                                      const std::string& meta,
                                      uint32_t table_id) {
  VLOG(3) << "load sparse table " << table_id << " with " << path << " meta "
          << meta;
  pserver_ptr_->_server_ptr->table(table_id)->load(path, meta);
}

75 76
void FleetWrapper::InitServer(
    const std::string& dist_desc,
T
tangwei12 已提交
77
    const std::vector<std::string>& host_sign_list, int index, int trainers,
78
    const std::vector<framework::ProgramDesc>& server_sub_program) {
T
tangwei12 已提交
79 80 81 82 83
  if (!is_initialized_) {
    VLOG(3) << "Going to init server";
    pserver_ptr_ = std::shared_ptr<paddle::distributed::PSCore>(
        new paddle::distributed::PSCore());
    pserver_ptr_->init_server(dist_desc, &host_sign_list, host_sign_list.size(),
T
tangwei12 已提交
84
                              index, trainers, server_sub_program);
T
tangwei12 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    is_initialized_ = true;
  } else {
    VLOG(3) << "Server can be initialized only once";
  }
}

// void FleetWrapper::InitWorker(
//     const std::string& dist_desc, const std::vector<uint64_t>&
//     host_sign_list, Scope* scope, const RpcCtxMap& send_ctx, const
//     std::unordered_map<uint64_t, std::vector<std::string>>&
//         dense_varnames,
//     const std::map<std::string, std::string>& envs, int node_num, int index)
//     {
//   if (!is_initialized_) {
//     VLOG(3) << "Going to init worker";

//     Communicator::InitInstance<AsyncCommunicator>(
//         send_ctx, dense_varnames, dist_desc, host_sign_list, scope, envs);

//     pserver_ptr_ = std::shared_ptr<paddle::distributed::PSCore>(
//         new paddle::distributed::PSCore());
//     pserver_ptr_->init_worker(dist_desc, _regions,
//                               const_cast<uint64_t*>(host_sign_list.data()),
//                               node_num, index);
//     is_initialized_ = true;
//   } else {
//     VLOG(3) << "Worker can be initialized only once";
//   }
// }

void FleetWrapper::InitWorker(
    const std::string& dist_desc,
    const std::vector<std::string>& host_sign_list, Scope* scope,
    const RpcCtxMap& send_ctx,
    const std::unordered_map<uint64_t, std::vector<std::string>>&
        dense_varnames,
    const std::map<std::string, std::string>& envs, int node_num, int index) {
  if (!is_initialized_) {
    VLOG(3) << "Going to init worker";

    Communicator::InitInstance<AsyncCommunicator>(
        send_ctx, dense_varnames, dist_desc, host_sign_list, scope, envs);

    pserver_ptr_ = std::shared_ptr<paddle::distributed::PSCore>(
        new paddle::distributed::PSCore());
    pserver_ptr_->init_worker(dist_desc, _regions, &host_sign_list, node_num,
                              index);
    is_initialized_ = true;
  } else {
    VLOG(3) << "Worker can be initialized only once";
  }
}

void FleetWrapper::StopServer() {
  VLOG(3) << "Going to stop server";
  auto* communicator = Communicator::GetInstance();
  auto status = communicator->_worker_ptr->stop_server();
  status.wait();
}

void FleetWrapper::FinalizeWorker() {
  VLOG(3) << "Going to finalize worker";
  pserver_ptr_->finalize_worker();
}

void FleetWrapper::BarrierWithTable(uint32_t barrier_type) {
  VLOG(3) << "Going to Barrier worker";
  auto* communicator = Communicator::GetInstance();
  communicator->BarrierWithTable(barrier_type);
}

uint64_t FleetWrapper::RunServer(const std::string& ip, uint32_t port) {
  VLOG(3) << "Going to run server with ip " << ip << " port " << port;
  auto ret = pserver_ptr_->run_server(ip, port);
  return ret;
}

std::vector<uint64_t> FleetWrapper::GetClientsInfo() {
  VLOG(3) << "Going to get client info";
Z
zhaocaibei123 已提交
164 165 166
  auto* communicator = Communicator::GetInstance();
  std::vector<uint64_t> res = communicator->GetClientInfo();
  return res;
T
tangwei12 已提交
167 168 169
}

void FleetWrapper::CreateClient2ClientConnection() {
Z
zhaocaibei123 已提交
170 171 172
  VLOG(1) << "Going to create client2client connection";
  auto* communicator = Communicator::GetInstance();
  communicator->_worker_ptr->create_client2client_connection(
T
tangwei12 已提交
173 174 175 176
      client2client_request_timeout_ms_, client2client_connect_timeout_ms_,
      client2client_max_retry_);
}

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
std::future<int32_t> FleetWrapper::PullSparseVarsAsync(
    const Scope& scope, const uint64_t table_id,
    const std::vector<std::string>& var_names, std::vector<uint64_t>* fea_keys,
    std::vector<std::vector<float>>* fea_values, int fea_value_dim) {
  fea_keys->clear();
  fea_keys->resize(0);
  fea_keys->reserve(MAX_FEASIGN_NUM);
  for (auto name : var_names) {
    Variable* var = scope.FindVar(name);
    if (var == nullptr) {
      continue;
    }
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    CHECK(tensor != nullptr) << "tensor of var " << name << " is null";
    int64_t* ids = tensor->data<int64_t>();
    size_t len = tensor->numel();
    for (auto i = 0u; i < len; ++i) {
      if (ids[i] == 0u) {
        continue;
      }
      fea_keys->push_back(static_cast<uint64_t>(ids[i]));
    }
  }
  fea_values->resize(fea_keys->size() + 1);
  for (auto& t : *fea_values) {
    t.resize(fea_value_dim);
  }
  std::vector<float*> pull_result_ptr;
  for (auto& t : *fea_values) {
    pull_result_ptr.push_back(t.data());
  }

  bool training = true;
  return pserver_ptr_->_worker_ptr->pull_sparse(pull_result_ptr.data(),
                                                table_id, fea_keys->data(),
                                                fea_keys->size(), training);
}

T
tangwei12 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
void FleetWrapper::PullSparseVarsSync(
    const Scope& scope, const uint64_t table_id,
    const std::vector<std::string>& var_names, std::vector<uint64_t>* fea_keys,
    std::vector<std::vector<float>>* fea_values, int fea_value_dim,
    const std::vector<std::string>& var_emb_names) {
  std::vector<std::future<int32_t>> pull_sparse_status;
  pull_sparse_status.resize(0);
  fea_keys->clear();
  fea_keys->resize(0);
  fea_keys->reserve(MAX_FEASIGN_NUM);
  for (size_t var_index = 0; var_index < var_names.size(); ++var_index) {
    const std::string& name = var_names[var_index];
    Variable* var = scope.FindVar(name);
    if (var == nullptr) {
      continue;
    }
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    CHECK(tensor != nullptr) << "tensor of var " << name << " is null";
    int64_t* ids = tensor->data<int64_t>();
    size_t len = tensor->numel();

    // skip slots which do not have embedding
    const std::string& emb_name = var_emb_names[var_index];
    Variable* emb_var = scope.FindVar(emb_name);
    if (emb_var == nullptr) {
      continue;
    }

    for (auto i = 0u; i < len; ++i) {
      if (ids[i] == 0u) {
        continue;
      }
      fea_keys->push_back(static_cast<uint64_t>(ids[i]));
    }
  }
  fea_values->resize(fea_keys->size() + 1);
  for (auto& t : *fea_values) {
    t.resize(fea_value_dim);
  }
  std::vector<float*> pull_result_ptr;
  for (auto& t : *fea_values) {
    pull_result_ptr.push_back(t.data());
  }
258
  bool training = true;
T
tangwei12 已提交
259
  auto status = pserver_ptr_->_worker_ptr->pull_sparse(
260 261
      pull_result_ptr.data(), table_id, fea_keys->data(), fea_keys->size(),
      training);
T
tangwei12 已提交
262 263 264 265 266 267 268 269 270 271 272 273
  pull_sparse_status.push_back(std::move(status));
  for (auto& t : pull_sparse_status) {
    t.wait();
    auto status = t.get();
    if (status != 0) {
      LOG(ERROR) << "fleet pull sparse failed, status[" << status << "]";
      sleep(sleep_seconds_before_fail_exit_);
      exit(-1);
    }
  }
}

274 275 276
// is_training is true means training, false means inference, the behavior is
// different on pserver

T
tangwei12 已提交
277 278 279
void FleetWrapper::PullSparseToTensorSync(const uint64_t table_id, int fea_dim,
                                          uint64_t padding_id,
                                          platform::Place place,
280
                                          bool is_training,
T
tangwei12 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
                                          std::vector<const LoDTensor*>* inputs,
                                          std::vector<LoDTensor*>* outputs) {
  std::vector<uint64_t> fea_keys;
  std::vector<float*> pull_result_ptr;
  fea_keys.reserve(MAX_FEASIGN_NUM / 100);
  pull_result_ptr.reserve(MAX_FEASIGN_NUM / 100);
  std::vector<float> init_value(fea_dim, 0);
  framework::LoDTensor* output = nullptr;
  float* output_data = nullptr;
  size_t output_index = -1;
  size_t output_len = 0;
  for (size_t index = 0; index < inputs->size(); ++index) {
    const framework::LoDTensor* tensor = inputs->at(index);
    const int64_t* ids = tensor->data<int64_t>();
    size_t len = tensor->numel();
    for (size_t i = 0; i < len; ++i, output_len += fea_dim) {
      if (!output || output_len == size_t(output->numel())) {
        ++output_index;
        CHECK(output_index < outputs->size());  // NOLINT
        output = outputs->at(output_index);
        output->set_lod(tensor->lod());
        output_data = output->mutable_data<float>(place);
        output_len = 0;
        CHECK(output->numel() % fea_dim == 0);  // NOLINT
        CHECK(output_data != nullptr);          // NOLINT
      }
      uint64_t real_id = static_cast<uint64_t>(ids[i]);
      if (real_id == padding_id) {
        memcpy(output_data + output_len, init_value.data(),
               sizeof(float) * fea_dim);
        continue;
      }
      fea_keys.push_back(real_id);
      pull_result_ptr.push_back(output_data + output_len);
    }
  }
  auto* communicator = Communicator::GetInstance();
  auto status = communicator->_worker_ptr->pull_sparse(
319 320
      pull_result_ptr.data(), table_id, fea_keys.data(), fea_keys.size(),
      is_training);
T
tangwei12 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
  status.wait();
  auto ret = status.get();
  if (ret != 0) {
    LOG(ERROR) << "fleet pull sparse failed, status[" << ret << "]";
    sleep(sleep_seconds_before_fail_exit_);
  }
}

void FleetWrapper::PullDenseVarsAsync(
    const Scope& scope, const uint64_t tid,
    const std::vector<std::string>& var_names,
    std::vector<std::future<int32_t>>* pull_dense_status, bool in_cpu) {
  auto& regions = _regions[tid];
  regions.clear();
  regions.resize(var_names.size());
  for (auto i = 0u; i < var_names.size(); ++i) {
    std::string varname = var_names[i];
    if (!in_cpu) {
      varname = var_names[i] + "pin";
    }
    Variable* var = scope.FindVar(varname);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    float* w = tensor->data<float>();
    paddle::distributed::Region reg(w, tensor->numel());
    regions[i] = std::move(reg);
  }
  auto status = pserver_ptr_->_worker_ptr->pull_dense(regions.data(),
                                                      regions.size(), tid);
  pull_dense_status->push_back(std::move(status));
}

void FleetWrapper::PullDenseVarsSync(
    const Scope& scope, const uint64_t tid,
    const std::vector<std::string>& var_names) {
  auto& regions = _regions[tid];
  regions.clear();
  regions.reserve(var_names.size());
  for (auto& t : var_names) {
    Variable* var = scope.FindVar(t);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    float* w = tensor->data<float>();
    paddle::distributed::Region reg(w, tensor->numel());
    regions.emplace_back(std::move(reg));
  }
  auto* communicator = Communicator::GetInstance();
  auto status = communicator->_worker_ptr->pull_dense(regions.data(),
                                                      regions.size(), tid);
  status.wait();
}

void FleetWrapper::PushDenseParamSync(
    const Scope& scope, const uint64_t table_id,
    const std::vector<std::string>& var_names) {
  auto place = platform::CPUPlace();
  std::vector<paddle::distributed::Region> regions;
  for (auto& t : var_names) {
    Variable* var = scope.FindVar(t);
    CHECK(var != nullptr) << "var[" << t << "] not found";
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    float* g = tensor->mutable_data<float>(place);
    paddle::distributed::Region reg(g, tensor->numel());
    regions.emplace_back(std::move(reg));
  }
  auto* communicator = Communicator::GetInstance();
  auto push_status = communicator->_worker_ptr->push_dense_param(
      regions.data(), regions.size(), table_id);
  push_status.wait();
  auto status = push_status.get();
  CHECK(status == 0) << "push dense param failed, status[" << status << "]";
}

void FleetWrapper::PushDenseVarsSync(
    Scope* scope, const uint64_t table_id,
    const std::vector<std::string>& var_names) {}

void FleetWrapper::PushDenseVarsAsync(
    const Scope& scope, const uint64_t table_id,
    const std::vector<std::string>& var_names,
    std::vector<std::future<int32_t>>* push_sparse_status, float scale_datanorm,
    int batch_size) {
Z
zhaocaibei123 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
  auto place = platform::CPUPlace();
  std::vector<paddle::distributed::Region> regions;
  for (auto& t : var_names) {
    Variable* var = scope.FindVar(t);
    CHECK(var != nullptr) << "var[" << t << "] not found";
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    float* g = tensor->mutable_data<float>(place);
    paddle::distributed::Region reg(g, tensor->numel());
    regions.emplace_back(std::move(reg));
    VLOG(3) << "FleetWrapper::PushDenseVarsAsync Var " << t << " talbe_id "
            << table_id << " Temp_data[0] " << g[0] << " Temp_data[-1] "
            << g[tensor->numel() - 1];
  }

  auto* communicator =
      dynamic_cast<AsyncCommunicator*>(Communicator::GetInstance());
  auto push_status = communicator->_worker_ptr->push_dense(
      regions.data(), regions.size(), table_id);

  communicator->PushDensePostProcessing();
T
tangwei12 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
}

void FleetWrapper::PushSparseVarsAsync(
    const Scope& scope, const uint64_t table_id,
    const std::string& grad_varname,
    std::vector<std::future<int32_t>>* push_sparse_status) {
  std::vector<std::string> varnames;
  varnames.push_back(grad_varname);

  auto* communicator = Communicator::GetInstance();
  PADDLE_ENFORCE_EQ(
      communicator->Check(table_id), true,
      platform::errors::InvalidArgument(
          "can not find table: %s, please check your config", table_id));
  communicator->Send(varnames, scope);
}

void FleetWrapper::PushSparseVarsWithLabelAsync(
    const Scope& scope, const uint64_t table_id,
    const std::vector<uint64_t>& fea_keys, const std::vector<float>& fea_labels,
    const std::vector<std::string>& sparse_key_names,
    const std::vector<std::string>& sparse_grad_names, const int emb_dim,
    std::vector<std::vector<float>>* push_values,
    std::vector<std::future<int32_t>>* push_sparse_status, const int batch_size,
    const bool use_cvm, const bool dump_slot,
    std::vector<uint64_t>* sparse_push_keys, const bool no_cvm) {
  // not support
  return;
}

void FleetWrapper::PushSparseFromTensorWithLabelAsync(
    const Scope& scope, const uint64_t table_id, int fea_dim,
    uint64_t padding_id, bool scale_sparse, const std::string& accesor,
    const std::string& click_name, platform::Place place,
    const std::vector<std::string>& input_names,
    std::vector<const LoDTensor*>* inputs,
    std::vector<const LoDTensor*>* outputs) {
  // not support
  return;
}

Z
zhaocaibei123 已提交
462 463 464 465 466 467
void FleetWrapper::PushSparseFromTensorAsync(
    const uint64_t table_id, int fea_dim, uint64_t padding_id,
    platform::Place place, std::vector<const LoDTensor*>* inputs,
    const LoDTensor* shows, const LoDTensor* clks,
    std::vector<LoDTensor*>* outputs) {
  int batch_size = -1;
Z
zhaocaibei123 已提交
468
  bool batch_size_consist = true;
Z
zhaocaibei123 已提交
469 470 471 472 473 474
  for (auto* input : *inputs) {
    int cur_batch_size =
        input->lod().size() ? input->lod()[0].size() - 1 : input->dims()[0];
    if (batch_size == -1) {
      batch_size = cur_batch_size;
    } else {
Z
zhaocaibei123 已提交
475 476 477
      // CHECK(batch_size == cur_batch_size);  // NOLINT
      batch_size_consist = false;
      break;
Z
zhaocaibei123 已提交
478 479 480 481 482 483 484 485 486 487 488
    }
  }
  CHECK(batch_size > 0);  // NOLINT

  int show_size =
      shows->lod().size() ? shows->lod()[0].size() - 1 : shows->dims()[0];
  CHECK(show_size == batch_size || show_size == 1);
  int clk_size =
      clks->lod().size() ? clks->lod()[0].size() - 1 : clks->dims()[0];
  CHECK(clk_size == batch_size || clk_size == 1);

489
  CHECK(outputs->size() == inputs->size());
Z
zhaocaibei123 已提交
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
  std::vector<uint64_t> push_keys;
  push_keys.reserve(MAX_FEASIGN_NUM / 100);
  std::vector<std::vector<float>> push_values;
  push_values.reserve(MAX_FEASIGN_NUM / 100);
  size_t output_len = 0;
  size_t input_idx = 0;

  VLOG(2) << "fleet.cc::emb_dim: " << fea_dim;

  // TODO(zhaocaibei123): check type of show/clk is int? float? uint64?
  // const long int* show_tensor = shows->data<int64_t>();
  // const long int* clk_tensor = clks->data<int64_t>();
  const int64_t* show_tensor = shows->data<int64_t>();
  const int64_t* clk_tensor = clks->data<int64_t>();

  for (size_t index = 0; index < inputs->size(); ++index) {
506 507 508 509 510 511 512 513 514 515 516
    framework::LoDTensor* g_tensor = outputs->at(index);
    float* g = g_tensor->data<float>();
    // no cvm
    if (batch_size_consist) {  // TODO(zhaocaibei123): add config
                               // scale_sparse_gradient_with_batch_size_
      Eigen::Map<
          Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>
          g_mat(g, g_tensor->numel() / fea_dim, fea_dim);
      g_mat.rightCols(fea_dim) *= batch_size;
    }

Z
zhaocaibei123 已提交
517 518 519
    const framework::LoDTensor* tensor = inputs->at(index);
    const int64_t* ids = tensor->data<int64_t>();
    size_t len = tensor->numel();
520
    output_len = 0;
Z
zhaocaibei123 已提交
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541

    if (tensor->lod().size() > 0) {
      for (size_t i = 0; i < tensor->lod()[0].size() - 1; ++i) {
        for (int j = tensor->lod()[0][i]; j < tensor->lod()[0][i + 1];
             ++j, output_len += fea_dim) {
          uint64_t real_id = static_cast<uint64_t>(ids[j]);
          if (real_id == padding_id) {
            continue;
          }
          push_keys.emplace_back(real_id);
          push_values.emplace_back(fea_dim + 3);
          // slot show clk grad... consistent with CtrCommonPushValue defined in
          // ctr_accessor.h
          push_values.back()[0] = 2;  // TODO(zhaocaibei123): slot
          push_values.back()[1] =
              (i >= show_size ? 1 : static_cast<float>(show_tensor[i]));
          push_values.back()[2] =
              (i >= clk_size ? 0 : static_cast<float>(clk_tensor[i]));

          float* data = push_values.back().data() + 3;

542
          memcpy(data, g + output_len, sizeof(float) * fea_dim);
Z
zhaocaibei123 已提交
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564

          ++input_idx;
        }
      }
    } else {
      for (size_t i = 0; i < len; ++i, output_len += fea_dim) {
        uint64_t real_id = static_cast<uint64_t>(ids[i]);
        if (real_id == padding_id) {
          continue;
        }
        push_keys.emplace_back(real_id);
        push_values.emplace_back(fea_dim + 3);
        // slot show clk grad... consistent with CtrCommonPushValue defined in
        // ctr_accessor.h
        push_values.back()[0] = 2;  // TODO(zhaocaibei123): slot
        push_values.back()[1] =
            (i >= show_size ? 1 : static_cast<float>(show_tensor[i]));
        push_values.back()[2] =
            (i >= clk_size ? 0 : static_cast<float>(clk_tensor[i]));

        float* data = push_values.back().data() + 3;

565
        memcpy(data, g + output_len, sizeof(float) * fea_dim);
Z
zhaocaibei123 已提交
566 567 568 569

        ++input_idx;
      }
    }
570
    CHECK(output_len == g_tensor->numel());
Z
zhaocaibei123 已提交
571 572 573 574 575 576 577 578
  }

  std::vector<float*> push_g_vec(input_idx, nullptr);

  for (auto i = 0u; i < push_keys.size(); ++i) {
    push_g_vec[i] = push_values.at(i).data();
  }

T
Thunderbrook 已提交
579
  auto* communicator = Communicator::GetInstance();
Z
zhaocaibei123 已提交
580 581 582 583 584 585 586 587 588 589 590 591
  PADDLE_ENFORCE_EQ(
      communicator->Check(table_id), true,
      platform::errors::InvalidArgument(
          "can not find table: %s, please check your config", table_id));
  auto status = communicator->_worker_ptr->push_sparse(
      table_id, push_keys.data(), (const float**)push_g_vec.data(),
      push_keys.size());
}

void FleetWrapper::LoadModel(const std::string& path, const int mode) {
  auto* communicator = Communicator::GetInstance();
  auto ret = communicator->_worker_ptr->load(path, std::to_string(mode));
T
tangwei12 已提交
592 593 594 595 596 597 598 599
  ret.wait();
  if (ret.get() != 0) {
    LOG(ERROR) << "load model from path:" << path << " failed";
  }
}

void FleetWrapper::LoadModelOneTable(const uint64_t table_id,
                                     const std::string& path, const int mode) {
T
Thunderbrook 已提交
600
  auto* communicator = Communicator::GetInstance();
T
tangwei12 已提交
601
  auto ret =
T
Thunderbrook 已提交
602 603 604
      communicator->_worker_ptr->load(table_id, path, std::to_string(mode));
  // auto ret =
  //    pserver_ptr_->_worker_ptr->load(table_id, path, std::to_string(mode));
T
tangwei12 已提交
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
  ret.wait();
  if (ret.get() != 0) {
    LOG(ERROR) << "load model of table id: " << table_id
               << ", from path: " << path << " failed";
  }
}

void FleetWrapper::SaveModel(const std::string& path, const int mode) {
  auto* communicator = Communicator::GetInstance();
  auto ret = communicator->_worker_ptr->save(path, std::to_string(mode));
  ret.wait();
  int32_t feasign_cnt = ret.get();
  if (feasign_cnt == -1) {
    LOG(ERROR) << "save model failed";
  }
}

void FleetWrapper::SaveModelOneTable(const uint64_t table_id,
                                     const std::string& path, const int mode) {
  auto* communicator = Communicator::GetInstance();
  auto ret =
      communicator->_worker_ptr->save(table_id, path, std::to_string(mode));
  ret.wait();
  if (ret.get() != 0) {
    LOG(ERROR) << "save model of table id: " << table_id
               << ", to path: " << path << " failed";
  }
}

634 635 636 637 638 639 640 641 642 643
void FleetWrapper::RecvAndSaveTable(const uint64_t table_id,
                                    const std::string& path) {
  auto* communicator = Communicator::GetInstance();
  auto ret = communicator->_worker_ptr->recv_and_save_table(table_id, path);
  if (ret != 0) {
    LOG(ERROR) << "save model of table id: " << table_id
               << ", to path: " << path << " failed";
  }
}

T
tangwei12 已提交
644 645 646 647 648 649 650 651 652 653
void FleetWrapper::PrintTableStat(const uint64_t table_id) {
  auto* communicator = Communicator::GetInstance();
  auto ret = communicator->_worker_ptr->print_table_stat(table_id);
  ret.wait();
  int32_t err_code = ret.get();
  if (err_code == -1) {
    LOG(ERROR) << "print table stat failed";
  }
}

654 655 656 657
void FleetWrapper::ShrinkSparseTable(int table_id, int threshold) {
  auto* communicator = Communicator::GetInstance();
  auto ret =
      communicator->_worker_ptr->shrink(table_id, std::to_string(threshold));
T
tangwei12 已提交
658
  ret.wait();
659 660 661 662
  int32_t err_code = ret.get();
  if (err_code == -1) {
    LOG(ERROR) << "shrink sparse table stat failed";
  }
T
tangwei12 已提交
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
}

void FleetWrapper::ClearModel() {
  auto ret = pserver_ptr_->_worker_ptr->clear();
  ret.wait();
}

void FleetWrapper::ClearOneTable(const uint64_t table_id) {
  auto ret = pserver_ptr_->_worker_ptr->clear(table_id);
  ret.wait();
}

void FleetWrapper::ShrinkDenseTable(int table_id, Scope* scope,
                                    std::vector<std::string> var_list,
                                    float decay, int emb_dim) {
  std::vector<paddle::distributed::Region> regions;
  for (std::string& name : var_list) {
    if (name.find("batch_sum") != std::string::npos) {
      Variable* var = scope->FindVar(name);
      CHECK(var != nullptr) << "var[" << name << "] not found";
683
      VLOG(3) << "prepare shrink dense batch_sum";
T
tangwei12 已提交
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      float* g = tensor->data<float>();

      // show_batch_sum += N * log(decay)
      std::string size_name = name;
      size_name.replace(size_name.find("batch_sum"), size_name.length(),
                        "batch_size");
      Variable* var_size = scope->FindVar(size_name);
      CHECK(var_size != nullptr) << "var[" << size_name << "] not found";
      VLOG(3) << "shrink dense batch_sum: " << name << ", " << size_name;
      float* g_size = var_size->GetMutable<LoDTensor>()->data<float>();

      for (int k = 0; k < tensor->numel(); k += emb_dim) {
        g[k] = g[k] + g_size[k] * log(decay);
      }
      paddle::distributed::Region reg(g, tensor->numel());
      regions.emplace_back(std::move(reg));
    } else {
      Variable* var = scope->FindVar(name);
      CHECK(var != nullptr) << "var[" << name << "] not found";
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      float* g = tensor->data<float>();
      paddle::distributed::Region reg(g, tensor->numel());
      regions.emplace_back(std::move(reg));
    }
  }
  auto push_status = pserver_ptr_->_worker_ptr->push_dense_param(
      regions.data(), regions.size(), table_id);
  push_status.wait();
  auto status = push_status.get();
  if (status != 0) {
    // PADDLE_THORW(platform::errors::Fatal(
    //    "push shrink dense param failed, status is [%d].", status));
    sleep(sleep_seconds_before_fail_exit_);
    exit(-1);
  }
}

void FleetWrapper::ClientFlush() {
  auto ret = pserver_ptr_->_worker_ptr->flush();
  ret.wait();
}

int FleetWrapper::RegisterClientToClientMsgHandler(int msg_type,
                                                   MsgHandlerFunc handler) {
Z
zhaocaibei123 已提交
729 730
  VLOG(1) << "calling FleetWrapper::RegisterClientToClientMsgHandler";
  auto* communicator = Communicator::GetInstance();
Z
zhaocaibei123 已提交
731 732 733 734 735 736 737 738 739
  // for unittest which does not call fleet.init_worker() first
  if (communicator == nullptr) {
    VLOG(0) << "FleetWrapper::RegisterClientToClientMsgHandler communicator is "
               "null";
    return -1;
  } else {
    return communicator->_worker_ptr->registe_client2client_msg_handler(
        msg_type, handler);
  }
T
tangwei12 已提交
740 741 742 743
}

std::future<int32_t> FleetWrapper::SendClientToClientMsg(
    int msg_type, int to_client_id, const std::string& msg) {
Z
zhaocaibei123 已提交
744 745
  auto* communicator = Communicator::GetInstance();
  return communicator->_worker_ptr->send_client2client_msg(msg_type,
T
tangwei12 已提交
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
                                                           to_client_id, msg);
}

std::default_random_engine& FleetWrapper::LocalRandomEngine() {
  struct engine_wrapper_t {
    std::default_random_engine engine;

    engine_wrapper_t() {
      struct timespec tp;
      clock_gettime(CLOCK_REALTIME, &tp);
      double cur_time = tp.tv_sec + tp.tv_nsec * 1e-9;
      static std::atomic<uint64_t> x(0);
      std::seed_seq sseq = {x++, x++, x++, (uint64_t)(cur_time * 1000)};
      engine.seed(sseq);
    }
  };
  thread_local engine_wrapper_t r;
  return r.engine;
}

size_t FleetWrapper::GetAbsoluteSum(size_t start, size_t end, size_t level,
                                    const framework::LoD& lod) {
  if (level >= lod.size() - 1) {
    return end - start;
  }
  size_t ret = 0;
  for (size_t i = start; i < end - 1; ++i) {
    size_t pos1 = lod[level][i];
    size_t pos2 = lod[level][i + 1];
    ret += GetAbsoluteSum(pos1, pos2, level + 1, lod);
  }
  return ret;
}

}  // end namespace distributed
}  // end namespace paddle