selected_rows_functor.cc 25.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

M
minqiyang 已提交
15
#include <algorithm>
T
wip  
typhoonzero 已提交
16
#include <set>
Q
Qiao Longfei 已提交
17
#include <unordered_map>
T
wip  
typhoonzero 已提交
18

S
sneaxiy 已提交
19
#include "paddle/fluid/operators/math/blas.h"
Y
Yi Wang 已提交
20
#include "paddle/fluid/operators/math/selected_rows_functor.h"
21 22
#include "paddle/fluid/platform/complex128.h"
#include "paddle/fluid/platform/complex64.h"
23 24 25 26 27

namespace paddle {
namespace operators {
namespace math {
template <typename T>
Q
QI JUN 已提交
28 29
struct SelectedRowsAdd<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
30 31 32 33
                  const framework::SelectedRows& input1,
                  const framework::SelectedRows& input2,
                  framework::SelectedRows* output) {
    auto in1_height = input1.height();
34 35 36 37 38 39
    PADDLE_ENFORCE_EQ(
        in1_height, input2.height(),
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height  = "
                                          "[%d], second input height = [%d]",
                                          in1_height, input2.height()));
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
    output->set_height(in1_height);

    auto& in1_rows = input1.rows();
    auto& in2_rows = input2.rows();
    std::vector<int64_t> out_rows;
    out_rows.reserve(in1_rows.size() + in2_rows.size());

    // concat rows
    out_rows.insert(out_rows.end(), in1_rows.begin(), in1_rows.end());
    out_rows.insert(out_rows.end(), in2_rows.begin(), in2_rows.end());
    output->set_rows(out_rows);

    auto* out_value = output->mutable_value();
    auto& in1_value = input1.value();
    auto& in2_value = input2.value();

    auto in1_row_numel = in1_value.numel() / in1_rows.size();
57 58 59 60 61 62 63 64 65 66 67 68
    PADDLE_ENFORCE_EQ(
        in1_row_numel, in2_value.numel() / in2_rows.size(),
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, in2_value.numel() / in2_rows.size()));
    PADDLE_ENFORCE_EQ(
        in1_row_numel, out_value->numel() / out_rows.size(),
        platform::errors::InvalidArgument(
            "The input and oupput width must be equal."
            "But recieved input width = [%d], output width = [%d]",
            in1_row_numel, out_value->numel() / out_rows.size()));
69 70

    auto in1_place = input1.place();
71 72 73
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in1_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
74
    auto in2_place = input2.place();
75 76 77
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in2_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
78
    auto out_place = context.GetPlace();
79 80 81
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(out_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
82 83 84

    auto* out_data = out_value->data<T>();
    auto* in1_data = in1_value.data<T>();
85 86
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, out_place), out_data,
                 BOOST_GET_CONST(platform::CPUPlace, in1_place), in1_data,
87 88 89
                 in1_value.numel() * sizeof(T));

    auto* in2_data = in2_value.data<T>();
90
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, out_place),
91
                 out_data + in1_value.numel(),
92
                 BOOST_GET_CONST(platform::CPUPlace, in2_place), in2_data,
93 94 95 96
                 in2_value.numel() * sizeof(T));
  }
};

Q
QI JUN 已提交
97 98
template struct SelectedRowsAdd<platform::CPUDeviceContext, float>;
template struct SelectedRowsAdd<platform::CPUDeviceContext, double>;
99 100

template <typename T>
Q
QI JUN 已提交
101 102
struct SelectedRowsAddTensor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
103 104 105 106 107
                  const framework::SelectedRows& input1,
                  const framework::Tensor& input2, framework::Tensor* output) {
    auto in1_height = input1.height();
    auto in2_dims = input2.dims();
    auto out_dims = output->dims();
108 109 110 111 112 113 114 115 116 117 118 119
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
    PADDLE_ENFORCE_EQ(
        in1_height, out_dims[0],
        platform::errors::InvalidArgument(
            "The input and output height must be equal."
            "But recieved input height = [%d], output height = [%d]",
            in1_height, out_dims[0]));
120 121 122 123 124

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
125 126 127 128 129 130 131 132 133 134 135 136
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2.numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2.numel() / in1_height));
    PADDLE_ENFORCE_EQ(
        in1_row_numel, output->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The input and output width must be equal."
            "But recieved input width = [%d], output width = [%d]",
            in1_row_numel, output->numel() / in1_height));
137

Q
QI JUN 已提交
138
    SetConstant<platform::CPUDeviceContext, T> functor;
139 140 141 142 143 144 145 146 147 148 149 150 151 152
    functor(context, output, 0.0);

    auto* in1_data = in1_value.data<T>();
    auto* out_data = output->data<T>();

    for (size_t i = 0; i < in1_rows.size(); i++) {
      for (int64_t j = 0; j < in1_row_numel; j++) {
        out_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
      }
    }

    auto out_eigen = framework::EigenVector<T>::Flatten(*output);
    auto in2_eigen = framework::EigenVector<T>::Flatten(input2);
Q
QI JUN 已提交
153
    out_eigen.device(*context.eigen_device()) = out_eigen + in2_eigen;
154 155 156
  }
};

Q
QI JUN 已提交
157 158
template struct SelectedRowsAddTensor<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddTensor<platform::CPUDeviceContext, double>;
Q
QI JUN 已提交
159 160

template <typename T>
Q
QI JUN 已提交
161 162
struct SelectedRowsAddTo<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
Q
QI JUN 已提交
163 164 165 166
                  const framework::SelectedRows& input1,
                  const int64_t input2_offset,
                  framework::SelectedRows* input2) {
    auto in1_height = input1.height();
167 168 169 170 171 172
    PADDLE_ENFORCE_EQ(
        in1_height, input2->height(),
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, input2->height()));
Q
QI JUN 已提交
173 174 175 176 177 178 179 180

    auto& in1_rows = input1.rows();
    auto& in2_rows = *(input2->mutable_rows());

    auto& in1_value = input1.value();
    auto* in2_value = input2->mutable_value();

    // concat rows
Y
Yu Yang 已提交
181
    in2_rows.Extend(in1_rows.begin(), in1_rows.end());
Q
QI JUN 已提交
182 183

    auto in1_place = input1.place();
184 185 186
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in1_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
Q
QI JUN 已提交
187
    auto in2_place = input2->place();
188 189 190
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in2_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
Q
QI JUN 已提交
191 192 193

    auto* in1_data = in1_value.data<T>();
    auto* in2_data = in2_value->data<T>();
194
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, in2_place),
Q
QI JUN 已提交
195
                 in2_data + input2_offset,
196
                 BOOST_GET_CONST(platform::CPUPlace, in1_place), in1_data,
Q
QI JUN 已提交
197 198 199 200
                 in1_value.numel() * sizeof(T));
  }
};

Q
QI JUN 已提交
201 202 203 204
template struct SelectedRowsAddTo<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, double>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, int>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, int64_t>;
Q
QI JUN 已提交
205

M
minqiyang 已提交
206 207 208 209 210 211 212 213 214 215 216 217
template <typename T>
struct SelectedRowsSumTo<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
                  const std::vector<framework::SelectedRows*>& input1,
                  const std::vector<int64_t>& input2_offsets,
                  framework::SelectedRows* input2) {
    // Ensure all selected rows have the same height
    size_t size = 0u;
    for (auto iter = input1.begin(); iter != input1.end(); ++iter) {
      auto& in_rows = (*iter)->rows();
      size += in_rows.end() - in_rows.begin();
      auto in1_height = (*iter)->height();
218 219 220 221 222 223
      PADDLE_ENFORCE_EQ(in1_height, input2->height(),
                        platform::errors::InvalidArgument(
                            "The two inputs height must be equal."
                            "But recieved first input height = [%d], second "
                            "input height = [%d]",
                            in1_height, input2->height()));
M
minqiyang 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
    }
    // concat rows
    std::vector<int64_t> in2_rows;
    in2_rows.reserve(in2_rows.size() + size);
    for (auto iter = input1.begin(); iter != input1.end(); ++iter) {
      const framework::Vector<int64_t>& in_rows = (*iter)->rows();
      in2_rows.insert(in2_rows.end(), in_rows.begin(), in_rows.end());
    }
    input2->set_rows(in2_rows);

    auto* in2_value = input2->mutable_value();
    auto* in2_data = in2_value->data<T>();
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
    size_t offset = 0u;
    for (size_t i = 0u; i != input1.size(); ++i) {
      auto& in_value = input1[i]->value();
      const auto* in_data = in_value.data<T>();
      offset += input2_offsets[i];
      blas.VCOPY(in_value.numel(), in_data, in2_data + offset);
    }
  }
};

template struct SelectedRowsSumTo<platform::CPUDeviceContext, float>;
template struct SelectedRowsSumTo<platform::CPUDeviceContext, double>;

Q
QI JUN 已提交
250
template <typename T>
Q
QI JUN 已提交
251 252
struct SelectedRowsAddToTensor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
Q
QI JUN 已提交
253 254
                  const framework::SelectedRows& input1,
                  framework::Tensor* input2) {
Q
Qiao Longfei 已提交
255
    if (UNLIKELY(input1.rows().size() == 0)) {
256 257 258
      LOG(WARNING) << "input selected rows is empty!";
      return;
    }
Q
QI JUN 已提交
259 260
    auto in1_height = input1.height();
    auto in2_dims = input2->dims();
261 262 263 264 265 266
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
Q
QI JUN 已提交
267 268 269 270 271

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
272 273 274 275 276 277
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2->numel() / in1_height));
Q
QI JUN 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290

    auto* in1_data = in1_value.data<T>();
    auto* input2_data = input2->data<T>();

    for (size_t i = 0; i < in1_rows.size(); i++) {
      for (int64_t j = 0; j < in1_row_numel; j++) {
        input2_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
      }
    }
  }
};

Q
QI JUN 已提交
291 292 293 294
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, double>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, int>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, int64_t>;
295

T
typhoonzero 已提交
296 297 298 299 300 301 302 303
// This is a separated namespace for manipulate SelectedRows typed
// data. Like merge duplicated rows, adding two SelectedRows etc.
//
// Another group of functors is called "scatter updates", which means
// use SelectedRows to update a dense tensor with different Ops, like
// add or mul.
namespace scatter {

Q
Qiao Longfei 已提交
304 305 306 307
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_floating_point<T>::value &&
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
308 309
elementwise_add_to(const DeviceContext& ctx, BlasT<DeviceContext, T>* blas,
                   size_t data_len, const T* in, T* out) {
Q
Qiao Longfei 已提交
310
  blas->AXPY(data_len, 1., in, out);
Q
Qiao Longfei 已提交
311 312 313 314 315 316
}

template <typename DeviceContext, typename T>
typename std::enable_if<
    !std::is_floating_point<T>::value &&
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
317 318
elementwise_add_to(const DeviceContext& ctx, BlasT<DeviceContext, T>* blas,
                   size_t data_len, const T* in, T* out) {
T
Tao Luo 已提交
319
  for (size_t i = 0; i < data_len; i++) {
Q
Qiao Longfei 已提交
320 321
    out[i] += in[i];
  }
T
typhoonzero 已提交
322 323 324 325
}

template <typename T>
struct MergeAdd<platform::CPUDeviceContext, T> {
T
wip  
typhoonzero 已提交
326
  framework::SelectedRows operator()(const platform::CPUDeviceContext& context,
327 328
                                     const framework::SelectedRows& input,
                                     const bool sorted_result = false) {
T
wip  
typhoonzero 已提交
329
    framework::SelectedRows out;
330
    (*this)(context, input, &out, sorted_result);
S
sneaxiy 已提交
331 332 333 334 335
    return out;
  }

  void operator()(const platform::CPUDeviceContext& context,
                  const framework::SelectedRows& input,
336 337
                  framework::SelectedRows* output,
                  const bool sorted_result = false) {
338 339
    std::vector<const framework::SelectedRows*> inputs;
    inputs.push_back(&input);
340
    (*this)(context, inputs, output, sorted_result);
341
  }
T
typhoonzero 已提交
342

343 344
  void operator()(const platform::CPUDeviceContext& context,
                  const std::vector<const framework::SelectedRows*>& inputs,
345 346
                  framework::SelectedRows* output,
                  const bool sorted_result = false) {
Q
Qiao Longfei 已提交
347
    if (inputs.size() == 0) {
M
minqiyang 已提交
348
      VLOG(3) << "no input! return";
Q
Qiao Longfei 已提交
349 350 351 352
      return;
    }
    const framework::SelectedRows* has_value_input = nullptr;
    for (auto* in : inputs) {
Q
Qiao Longfei 已提交
353
      if (in->rows().size() > 0) {
Q
Qiao Longfei 已提交
354 355 356 357 358
        has_value_input = in;
        break;
      }
    }
    if (has_value_input == nullptr) {
M
minqiyang 已提交
359
      VLOG(3) << "no input has value! just return" << std::endl;
Q
Qiao Longfei 已提交
360 361 362 363
      return;
    }
    auto input_width = has_value_input->value().dims()[1];
    auto input_height = has_value_input->height();
364 365
    framework::SelectedRows& out = *output;
    std::set<int64_t> merged_row_set;
366
    size_t row_num = 0;
367
    for (auto* input : inputs) {
Q
Qiao Longfei 已提交
368
      if (input->rows().size() == 0) {
Q
Qiao Longfei 已提交
369 370
        continue;
      }
371
      PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1],
372 373 374
                        platform::errors::InvalidArgument(
                            "All inputs should have same "
                            "dimension except for the first one."));
375
      PADDLE_ENFORCE_EQ(input_height, input->height(),
376 377
                        platform::errors::InvalidArgument(
                            "All inputs should have same height."));
378
      row_num += input->rows().size();
379 380
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }
381

382
    out.set_height(input_height);
T
wip  
typhoonzero 已提交
383
    out.mutable_value()->mutable_data<T>(
T
typhoonzero 已提交
384
        framework::make_ddim(
385
            {static_cast<int64_t>(merged_row_set.size()), input_width}),
T
typhoonzero 已提交
386
        context.GetPlace());
387
    auto* out_data = out.mutable_value()->data<T>();
T
typhoonzero 已提交
388

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
    if (merged_row_set.size() == row_num && !sorted_result) {
      // no duplicated ids, just concat the result together
      std::vector<int64_t> merge_rows;
      merge_rows.reserve(row_num);
      // concat rows
      for (auto* in : inputs) {
        merge_rows.insert(merge_rows.end(), in->rows().begin(),
                          in->rows().end());
      }
      out.set_rows(merge_rows);
      auto in_place = inputs[0]->place();
      auto out_place = out.place();
      int64_t copied_numel = 0;
      for (auto* in : inputs) {
        auto* in_data = in->value().data<T>();
404
        auto in_numel = in->rows().size() * input_width;
405
        memory::Copy(BOOST_GET_CONST(platform::CPUPlace, out_place),
406
                     out_data + copied_numel,
407
                     BOOST_GET_CONST(platform::CPUPlace, in_place), in_data,
408 409 410 411 412 413
                     in_numel * sizeof(T));
        copied_numel += in_numel;
      }
    } else {
      std::vector<int64_t> merge_rows(merged_row_set.begin(),
                                      merged_row_set.end());
T
typhoonzero 已提交
414

415 416 417
      if (sorted_result) {
        std::sort(merge_rows.begin(), merge_rows.end());
      }
T
typhoonzero 已提交
418

419 420 421 422 423 424 425 426
      out.set_rows(merge_rows);

      math::SetConstant<platform::CPUDeviceContext, T> constant_functor;
      constant_functor(context, out.mutable_value(), 0.0);

      std::unordered_map<int64_t, size_t> rows_to_id;
      for (size_t i = 0; i < merge_rows.size(); ++i) {
        rows_to_id[merge_rows[i]] = i;
Q
Qiao Longfei 已提交
427
      }
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442

      auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
      for (auto* input : inputs) {
        if (input->rows().size() == 0) {
          continue;
        }
        auto* input_data = input->value().data<T>();
        auto& input_rows = input->rows();

        for (size_t i = 0; i < input_rows.size(); i++) {
          size_t out_i = rows_to_id[input_rows[i]];
          elementwise_add_to<platform::CPUDeviceContext, T>(
              context, &blas, static_cast<size_t>(input_width),
              &input_data[i * input_width], &out_data[out_i * input_width]);
        }
T
typhoonzero 已提交
443 444
      }
    }
T
wip  
typhoonzero 已提交
445 446 447
  }
};

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
template <typename T>
struct MergeAverage<platform::CPUDeviceContext, T> {
  framework::SelectedRows operator()(const platform::CPUDeviceContext& context,
                                     const framework::SelectedRows& input) {
    framework::SelectedRows out;
    (*this)(context, input, &out);
    return out;
  }

  void operator()(const platform::CPUDeviceContext& context,
                  const framework::SelectedRows& input,
                  framework::SelectedRows* output) {
    std::vector<const framework::SelectedRows*> inputs;
    inputs.push_back(&input);
    (*this)(context, inputs, output);
  }

  void operator()(const platform::CPUDeviceContext& context,
                  const std::vector<const framework::SelectedRows*>& inputs,
                  framework::SelectedRows* output) {
    if (inputs.size() == 0) {
      VLOG(3) << "no input! return";
      return;
    }
    const framework::SelectedRows* has_value_input = nullptr;
    for (auto* in : inputs) {
      if (in->rows().size() > 0) {
        has_value_input = in;
        break;
      }
    }
    if (has_value_input == nullptr) {
      VLOG(3) << "no input has value! just return" << std::endl;
      return;
    }
    auto input_width = has_value_input->value().dims()[1];
    auto input_height = has_value_input->height();
    framework::SelectedRows& out = *output;
    std::set<int64_t> merged_row_set;
    size_t row_num = 0;
    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1],
493 494 495
                        platform::errors::InvalidArgument(
                            "All inputs should have same "
                            "dimension except for the first one."));
496
      PADDLE_ENFORCE_EQ(input_height, input->height(),
497 498
                        platform::errors::InvalidArgument(
                            "All input should have same height."));
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
      row_num += input->rows().size();
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }

    out.set_height(input_height);
    out.mutable_value()->mutable_data<T>(
        framework::make_ddim(
            {static_cast<int64_t>(merged_row_set.size()), input_width}),
        context.GetPlace());
    auto* out_data = out.mutable_value()->data<T>();

    std::vector<int64_t> merge_rows(merged_row_set.begin(),
                                    merged_row_set.end());
    std::sort(merge_rows.begin(), merge_rows.end());

    out.set_rows(merge_rows);

    math::SetConstant<platform::CPUDeviceContext, T> constant_functor;
    constant_functor(context, out.mutable_value(), 0.0);

    std::unordered_map<int64_t, size_t> rows_to_id;
    for (size_t i = 0; i < merge_rows.size(); ++i) {
      rows_to_id[merge_rows[i]] = i;
    }

    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      auto* input_data = input->value().data<T>();
      auto& input_rows = input->rows();

      for (size_t i = 0; i < input_rows.size(); i++) {
        size_t out_i = rows_to_id[input_rows[i]];
        elementwise_add_to<platform::CPUDeviceContext, T>(
            context, &blas, static_cast<size_t>(input_width),
            &input_data[i * input_width], &out_data[out_i * input_width]);
      }
    }
    size_t input_width_cast = static_cast<size_t>(input_width);
    T count = static_cast<T>(inputs.size());
    for (size_t i = 0; i < merge_rows.size(); i++) {
      for (size_t j = 0; j < input_width_cast; j++) {
        out_data[i * input_width + j] = out_data[i * input_width + j] / count;
      }
    }
  }
};

T
wip  
typhoonzero 已提交
549 550
template struct MergeAdd<platform::CPUDeviceContext, int>;
template struct MergeAdd<platform::CPUDeviceContext, int64_t>;
Q
Qiao Longfei 已提交
551 552
template struct MergeAdd<platform::CPUDeviceContext, float>;
template struct MergeAdd<platform::CPUDeviceContext, double>;
553 554 555 556
template struct MergeAdd<platform::CPUDeviceContext,
                         paddle::platform::complex64>;
template struct MergeAdd<platform::CPUDeviceContext,
                         paddle::platform::complex128>;
T
wip  
typhoonzero 已提交
557

558 559 560 561 562
template struct MergeAverage<platform::CPUDeviceContext, int>;
template struct MergeAverage<platform::CPUDeviceContext, int64_t>;
template struct MergeAverage<platform::CPUDeviceContext, float>;
template struct MergeAverage<platform::CPUDeviceContext, double>;

T
wip  
typhoonzero 已提交
563 564
template <typename T>
struct UpdateToTensor<platform::CPUDeviceContext, T> {
T
typhoonzero 已提交
565 566 567
  void operator()(const platform::CPUDeviceContext& context,
                  const ScatterOps& op, const framework::SelectedRows& input1,
                  framework::Tensor* input2) {
T
wip  
typhoonzero 已提交
568 569
    auto in1_height = input1.height();
    auto in2_dims = input2->dims();
570 571 572 573 574 575
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
T
wip  
typhoonzero 已提交
576 577 578 579 580

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
581 582 583 584 585 586
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2->numel() / in1_height));
T
wip  
typhoonzero 已提交
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630

    auto* in1_data = in1_value.data<T>();
    auto* input2_data = input2->data<T>();

    // FIXME(typhoonzero): use macro fix the below messy code.
    switch (op) {
      case ScatterOps::ASSIGN:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::ADD:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::SUB:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] -=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::SUBBY:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j] -
            input2_data[in1_rows[i] * in1_row_numel + j];
        break;
      case ScatterOps::MUL:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] *=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::DIV:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] /=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::DIVBY:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j] /
            input2_data[in1_rows[i] * in1_row_numel + j];
        break;
    }
T
typhoonzero 已提交
631 632 633 634
  }
};

}  // namespace scatter
635 636 637
}  // namespace math
}  // namespace operators
}  // namespace paddle