pool_op.h 11.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <algorithm>
18 19
#include <string>
#include <vector>
Y
Yi Wang 已提交
20 21 22 23
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/pooling.h"
24 25 26 27
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
28 29 30 31 32 33

class PoolOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override;
34 35 36 37

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
38 39 40

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
41
      const framework::OpKernelType& expected_kernel_type) const override;
42 43 44 45 46 47 48
};

class PoolOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override;
49 50 51 52

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
53 54 55 56

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override;
57 58 59 60
};

class Pool2dOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
61
  void Make() override;
62 63 64 65
};

class Pool3dOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
66
  void Make() override;
67
};
68 69 70

template <typename T = int>
inline void UpdatePadding(std::vector<T>* paddings, const bool global_pooling,
71 72 73
                          const bool adaptive,
                          const std::string padding_algorithm,
                          const framework::DDim data_dims,
74 75
                          const std::vector<T>& strides,
                          const std::vector<T>& ksize) {
76
  // set padding size == data_dims.size() * 2
77
  auto data_shape = framework::vectorize<T>(data_dims);
78 79
  if (static_cast<int>(paddings->size()) == data_dims.size()) {
    for (int i = 0; i < data_dims.size(); ++i) {
80
      T copy_pad = *(paddings->begin() + 2 * i);
81 82 83
      paddings->insert(paddings->begin() + 2 * i + 1, copy_pad);
    }
  } else {
84 85 86 87 88
    PADDLE_ENFORCE_EQ(data_dims.size() * 2, paddings->size(),
                      platform::errors::InvalidArgument(
                          "Paddings size %d should be the same or twice as the "
                          "pooling size %d.",
                          paddings->size(), data_dims.size() * 2));
89 90
  }

91
  // when padding_algorithm is "VALID" or "SAME"
92
  if (padding_algorithm == "SAME") {
93
    for (int i = 0; i < data_dims.size(); ++i) {
94 95
      T out_size = (data_dims[i] + strides[i] - 1) / strides[i];
      T pad_sum =
96 97
          std::max((out_size - 1) * strides[i] + ksize[i] - data_shape[i],
                   static_cast<T>(0));
98 99
      T pad_0 = pad_sum / 2;
      T pad_1 = pad_sum - pad_0;
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
      *(paddings->begin() + i * 2) = pad_0;
      *(paddings->begin() + i * 2 + 1) = pad_1;
    }
  } else if (padding_algorithm == "VALID") {
    for (auto it = paddings->begin(); it != paddings->end(); it++) {
      *it = 0;
    }
  }

  // if global_pooling == true or adaptive == true, padding will be ignore
  if (global_pooling || adaptive) {
    for (auto it = paddings->begin(); it != paddings->end(); it++) {
      *it = 0;
    }
  }
}

117 118
template <typename T = int>
inline void UpdateKsize(std::vector<T>* ksize,
119 120 121
                        const framework::DDim data_dims) {
  ksize->resize(static_cast<size_t>(data_dims.size()));
  for (size_t i = 0; i < ksize->size(); ++i) {
122
    *(ksize->begin() + i) = static_cast<T>(data_dims[i]);
123 124
  }
}
125

Q
QI JUN 已提交
126
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
127
class PoolKernel : public framework::OpKernel<T> {
128 129
 public:
  void Compute(const framework::ExecutionContext& context) const override {
C
chengduoZH 已提交
130
    const Tensor* in_x = context.Input<Tensor>("X");
131
    Tensor* out = context.Output<Tensor>("Out");
132

C
chengduoZH 已提交
133
    std::string pooling_type = context.Attr<std::string>("pooling_type");
134 135 136
    std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
137
    std::string data_format = context.Attr<std::string>("data_format");
138
    bool exclusive = context.Attr<bool>("exclusive");
139
    bool adaptive = context.Attr<bool>("adaptive");
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    bool global_pooling = context.Attr<bool>("global_pooling");
    std::string padding_algorithm =
        context.Attr<std::string>("padding_algorithm");

    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    // update paddings
    auto in_x_dims = in_x->dims();
    framework::DDim data_dims;
    if (channel_last) {
      data_dims = framework::slice_ddim(in_x_dims, 1, in_x_dims.size() - 1);
    } else {
      data_dims = framework::slice_ddim(in_x_dims, 2, in_x_dims.size());
    }

    UpdatePadding(&paddings, global_pooling, adaptive, padding_algorithm,
                  data_dims, strides, ksize);
157 158
    if (data_dims.size() * 2 == static_cast<int>(paddings.size())) {
      for (int i = 0; i < data_dims.size(); ++i) {
159
        paddings.erase(paddings.begin() + i + 1);
160 161
      }
    }
162 163 164 165 166

    if (global_pooling) {
      UpdateKsize(&ksize, data_dims);
    }

Q
QI JUN 已提交
167
    auto& dev_ctx = context.template device_context<DeviceContext>();
168 169 170
    switch (ksize.size()) {
      case 2: {
        if (pooling_type == "max") {
C
chengduoZH 已提交
171
          paddle::operators::math::Pool2dFunctor<
Q
QI JUN 已提交
172
              DeviceContext, paddle::operators::math::MaxPool<T>, T>
173
              pool2d_forward;
174
          paddle::operators::math::MaxPool<T> pool_process;
175 176
          pool2d_forward(dev_ctx, *in_x, ksize, strides, paddings, data_format,
                         pool_process, true, false, out);
177

C
chengduoZH 已提交
178
        } else if (pooling_type == "avg") {
C
chengduoZH 已提交
179
          paddle::operators::math::Pool2dFunctor<
Q
QI JUN 已提交
180
              DeviceContext, paddle::operators::math::AvgPool<T>, T>
181
              pool2d_forward;
182
          paddle::operators::math::AvgPool<T> pool_process;
183 184
          pool2d_forward(dev_ctx, *in_x, ksize, strides, paddings, data_format,
                         pool_process, exclusive, adaptive, out);
185 186 187 188
        }
      } break;
      case 3: {
        if (pooling_type == "max") {
C
chengduoZH 已提交
189
          paddle::operators::math::Pool3dFunctor<
Q
QI JUN 已提交
190
              DeviceContext, paddle::operators::math::MaxPool<T>, T>
191
              pool3d_forward;
192
          paddle::operators::math::MaxPool<T> pool_process;
193 194 195
          pool3d_forward(dev_ctx, *in_x, ksize, strides, paddings, data_format,
                         pool_process, true, false, out);

C
chengduoZH 已提交
196
        } else if (pooling_type == "avg") {
C
chengduoZH 已提交
197
          paddle::operators::math::Pool3dFunctor<
Q
QI JUN 已提交
198
              DeviceContext, paddle::operators::math::AvgPool<T>, T>
199
              pool3d_forward;
200
          paddle::operators::math::AvgPool<T> pool_process;
201 202
          pool3d_forward(dev_ctx, *in_x, ksize, strides, paddings, data_format,
                         pool_process, exclusive, adaptive, out);
203 204
        }
      } break;
205 206 207 208
      default: {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Pool op only supports 2D and 3D input."));
      }
209 210 211 212
    }
  }
};

Q
QI JUN 已提交
213
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
214
class PoolGradKernel : public framework::OpKernel<T> {
215 216
 public:
  void Compute(const framework::ExecutionContext& context) const override {
C
chengduoZH 已提交
217
    const Tensor* in_x = context.Input<Tensor>("X");
218 219 220
    const Tensor* out = context.Input<Tensor>("Out");
    const Tensor* out_grad =
        context.Input<Tensor>(framework::GradVarName("Out"));
C
chengduoZH 已提交
221
    Tensor* in_x_grad = context.Output<Tensor>(framework::GradVarName("X"));
222

C
chengduoZH 已提交
223
    std::string pooling_type = context.Attr<std::string>("pooling_type");
224 225 226
    std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
227
    bool exclusive = context.Attr<bool>("exclusive");
228
    bool adaptive = context.Attr<bool>("adaptive");
229 230 231 232 233 234
    std::string data_format = context.Attr<std::string>("data_format");
    bool global_pooling = context.Attr<bool>("global_pooling");
    std::string padding_algorithm =
        context.Attr<std::string>("padding_algorithm");

    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");
235

236 237 238 239 240 241 242 243 244 245
    // update paddings
    auto in_x_dims = in_x->dims();
    framework::DDim data_dims;
    if (channel_last) {
      data_dims = framework::slice_ddim(in_x_dims, 1, in_x_dims.size() - 1);
    } else {
      data_dims = framework::slice_ddim(in_x_dims, 2, in_x_dims.size());
    }
    UpdatePadding(&paddings, global_pooling, adaptive, padding_algorithm,
                  data_dims, strides, ksize);
246 247
    if (data_dims.size() * 2 == static_cast<int>(paddings.size())) {
      for (int i = 0; i < data_dims.size(); ++i) {
248
        paddings.erase(paddings.begin() + i + 1);
C
fix bug  
chengduoZH 已提交
249
      }
250
    }
251 252 253 254 255

    if (global_pooling) {
      UpdateKsize(&ksize, data_dims);
    }

Q
QI JUN 已提交
256
    auto& dev_ctx = context.template device_context<DeviceContext>();
C
chengduoZH 已提交
257 258
    if (in_x_grad) {
      in_x_grad->mutable_data<T>(context.GetPlace());
Q
QI JUN 已提交
259 260
      paddle::operators::math::SetConstant<DeviceContext, T> set_constant;
      set_constant(dev_ctx, in_x_grad, 0.0);
261 262 263 264

      switch (ksize.size()) {
        case 2: {
          if (pooling_type == "max") {
Q
QI JUN 已提交
265
            paddle::operators::math::MaxPool2dGradFunctor<DeviceContext, T>
266
                pool2d_backward;
Q
QI JUN 已提交
267
            pool2d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides,
268
                            paddings, data_format, in_x_grad);
C
chengduoZH 已提交
269
          } else if (pooling_type == "avg") {
C
chengduoZH 已提交
270
            paddle::operators::math::Pool2dGradFunctor<
Q
QI JUN 已提交
271
                DeviceContext, paddle::operators::math::AvgPoolGrad<T>, T>
272
                pool2d_backward;
273
            paddle::operators::math::AvgPoolGrad<T> pool_process;
Q
QI JUN 已提交
274
            pool2d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides,
275 276
                            paddings, data_format, pool_process, exclusive,
                            adaptive, in_x_grad);
277 278 279 280
          }
        } break;
        case 3: {
          if (pooling_type == "max") {
Q
QI JUN 已提交
281
            paddle::operators::math::MaxPool3dGradFunctor<DeviceContext, T>
282
                pool3d_backward;
Q
QI JUN 已提交
283
            pool3d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides,
284
                            paddings, data_format, in_x_grad);
C
chengduoZH 已提交
285
          } else if (pooling_type == "avg") {
C
chengduoZH 已提交
286
            paddle::operators::math::Pool3dGradFunctor<
Q
QI JUN 已提交
287
                DeviceContext, paddle::operators::math::AvgPoolGrad<T>, T>
288
                pool3d_backward;
289
            paddle::operators::math::AvgPoolGrad<T> pool_process;
Q
QI JUN 已提交
290
            pool3d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides,
291 292
                            paddings, data_format, pool_process, exclusive,
                            adaptive, in_x_grad);
293 294
          }
        } break;
295 296 297 298
        default: {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Pool op only supports 2D and 3D input."));
        }
299 300 301 302 303 304 305
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle