distribute_transpiler.py 95.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
tangwei12 已提交
33
import sys
T
typhoonzero 已提交
34
import math
T
tangwei12 已提交
35 36
from functools import reduce

37
import collections
T
tangwei12 已提交
38
import six
Q
Qiao Longfei 已提交
39
import logging
40

T
tangwei12 已提交
41 42
import numpy as np

43
from .ps_dispatcher import RoundRobin, PSDispatcher
W
Wu Yi 已提交
44
from .. import core, framework, unique_name
T
typhoonzero 已提交
45
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
46 47 48
    default_startup_program, Block, Parameter, grad_var_name
from .details import wait_server_ready, UnionFind, VarStruct, VarsDistributed
from .details import delete_ops, find_op_by_output_arg
Q
Qiao Longfei 已提交
49
from ..distribute_lookup_table import find_distributed_lookup_table
50
from . import collective
51 52 53

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
54
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
55 56
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
57
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
58
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
59 60 61 62 63 64 65 66 67
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
68 69


T
typhoonzero 已提交
70 71 72 73 74 75
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
76

T
typhoonzero 已提交
77 78
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
79 80


81 82 83 84
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
85
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
86
    """
87 88 89 90 91 92
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
93
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
94 95 96

    Args:
        var_list (list): List of variables.
97 98
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
99 100
        min_block_size (int): Minimum splitted block size.
    Returns:
101
        blocks (list[(varname, block_id, current_block_size)]): A list
102
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
103 104 105
    """
    blocks = []
    for var in var_list:
106
        split_count = slice_count
T
typhoonzero 已提交
107 108 109 110
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
111
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
112 113 114 115 116 117 118 119 120
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
121
        # update split_count after aligning
T
typhoonzero 已提交
122
        split_count = int(math.ceil(var_numel / float(block_size)))
123
        for block_id in range(split_count):
T
typhoonzero 已提交
124 125 126 127 128 129 130
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
131 132
class DistributeTranspilerConfig(object):
    """
H
haowang101779990 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146
    .. py:attribute:: slice_var_up (bool)

          Do Tensor slice for pservers, default is True.

    .. py:attribute:: split_method (PSDispatcher)

          RoundRobin or HashName can be used.
          Try to choose the best method to balance loads for pservers.

    .. py:attribute:: min_block_size (int)

          Minimum number of splitted elements in block.

          According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
T
Tink_Y 已提交
147
          We can use bandwidth effiently when data size is larger than 2MB.If you
H
haowang101779990 已提交
148 149
          want to change it, please be sure you have read the slice_variable function.

150 151 152 153 154
    Examples:
        .. code-block:: python

            config = fluid.DistributeTranspilerConfig()
            config.slice_var_up = True
G
gongweibao 已提交
155 156 157 158 159
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
160
    enable_dc_asgd = False
161
    # supported modes: pserver, nccl2, collective
W
Wu Yi 已提交
162
    mode = "pserver"
163
    print_log = False
W
Wu Yi 已提交
164
    wait_port = True
Q
Qiao Longfei 已提交
165 166
    # split the send recv var in runtime
    runtime_split_send_recv = False
167
    sync_mode = True
G
gongweibao 已提交
168

169 170 171 172 173 174 175
    nccl_comm_num = 1
    #The picture here illustrates the principle:
    #https://github.com/PaddlePaddle/Paddle/pull/17263#discussion_r285411396
    use_hierarchical_allreduce = False
    #Nccl ranks in a node when use hierarchical allreduce, it's setted to gpu cards' number in most cases.
    hierarchical_allreduce_inter_nranks = 0

176
    # if mode is collective
177
    # supported modes: grad_allreduce, local_sgd
178 179
    collective_mode = None

G
gongweibao 已提交
180

Y
gen rst  
yi.wu 已提交
181
class DistributeTranspiler(object):
Y
yi.wu 已提交
182 183 184 185
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
W
Wu Yi 已提交
186
    Supports two modes: pserver mode and nccl2 mode.
Y
yi.wu 已提交
187

W
Wu Yi 已提交
188 189 190 191 192 193 194 195 196
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
197 198 199 200

    Examples:
        .. code-block:: python

201 202 203 204 205 206 207 208 209 210
            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
            y_predict = fluid.layers.fc(input=x, size=1, act=None)

            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
            avg_loss = fluid.layers.mean(cost)

            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
            sgd_optimizer.minimize(avg_loss)

T
Tink_Y 已提交
211 212 213 214 215 216
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
217
            role = "PSERVER"
T
Tink_Y 已提交
218 219 220 221 222 223
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
224
                                                                pserver_program)
T
Tink_Y 已提交
225 226 227 228
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
229 230
            trainer_num = 2
            trainer_id = 0
T
Tink_Y 已提交
231 232
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
233
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
T
Tink_Y 已提交
234
            t = fluid.DistributeTranspiler(config=config)
235
            t.transpile(trainer_id=trainer_id, trainers=trainer_endpoints, current_endpoint="192.168.0.1:6174")
T
Tink_Y 已提交
236
            exe = fluid.ParallelExecutor(
237 238 239
                use_cuda=True,
                loss_name=avg_loss.name,
                num_trainers=trainer_num,
T
Tink_Y 已提交
240 241
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
242
    """
Y
Yancey1989 已提交
243

G
gongweibao 已提交
244 245 246 247 248 249 250 251 252
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

253 254 255
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
256 257 258
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

W
Wu Yi 已提交
259 260 261 262
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
263 264
                         startup_program=None,
                         wait_port=True):
W
Wu Yi 已提交
265 266 267 268 269 270
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)
271 272
            if trainer_id == 0 and wait_port:
                wait_server_ready(worker_endpoints)
W
Wu Yi 已提交
273 274 275

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
276 277 278 279 280 281 282 283 284

            for i in range(1, self.config.nccl_comm_num):
                startup_program.global_block().create_var(
                    name="NCCLID_{}".format(i),
                    persistable=True,
                    type=core.VarDesc.VarType.RAW)

            if self.config.use_hierarchical_allreduce:
                for i in range(0, self.config.nccl_comm_num):
G
gongweibao 已提交
285 286 287 288
                    startup_program.global_block().create_var(
                        name="Hierarchical_inter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)
289 290 291 292 293
                    startup_program.global_block().create_var(
                        name="Hierarchical_exter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)

W
Wu Yi 已提交
294 295 296 297 298
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
299 300 301 302 303 304 305
                    "trainers": trainers.split(","),
                    "trainer_id": trainer_id,
                    "nccl_comm_num": self.config.nccl_comm_num,
                    "use_hierarchical_allreduce":
                    self.config.use_hierarchical_allreduce,
                    "hierarchical_allreduce_inter_nranks":
                    self.config.hierarchical_allreduce_inter_nranks
W
Wu Yi 已提交
306 307 308 309 310
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
    def _transpile_collective(self,
                              collective_mode,
                              trainer_id,
                              trainers,
                              current_endpoint,
                              startup_program=None,
                              main_program=None,
                              wait_port=True):
        if isinstance(trainers, str):
            endpoints = trainers.split(",")
        elif isinstance(trainers, list):
            endpoints = trainers
        else:
            raise ValueError('invalid trainers config: ' + str(trainers))

        if len(endpoints) == 1:
            raise ValueError('invalid trainer number in distributed: 1')

        if startup_program is None:
            startup_program = default_startup_program()

        if main_program is None:
            main_program = default_main_program()

        transpiler = None
        if collective_mode == 'grad_allreduce':
            transpiler = collective.GradAllReduce()
        elif collective_mode == 'local_sgd':
            transpiler = collective.LocalSGD()
        else:
            raise ValueError('invalid collective_mode: %s' % collective_mode)

        transpiler.transpile(
            startup_program=startup_program,
            main_program=main_program,
            rank=trainer_id,
            endpoints=endpoints,
            current_endpoint=current_endpoint,
            wait_port=wait_port)

Q
Qiao Longfei 已提交
351
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
352
        sparse_update_ops = []
353
        sparse_update_op_types = ["lookup_table", "nce", "hierarchical_sigmoid"]
Q
Qiao Longfei 已提交
354 355
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
356
                    'remote_prefetch') is True:
Q
Qiao Longfei 已提交
357 358 359
                sparse_update_ops.append(op)
        return sparse_update_ops

Q
Qiao Longfei 已提交
360
    def _update_remote_sparse_update_op(self, param_varname, height_sections,
Q
Qiao Longfei 已提交
361
                                        endpint_map, table_names):
Q
Qiao Longfei 已提交
362 363 364
        for op in self.sparse_update_ops:
            if param_varname in op.input_arg_names:
                op._set_attr('epmap', endpint_map)
Q
Qiao Longfei 已提交
365
                op._set_attr('table_names', table_names)
Q
Qiao Longfei 已提交
366
                op._set_attr('height_sections', height_sections)
Q
Qiao Longfei 已提交
367 368 369 370 371 372 373
                op._set_attr('trainer_id', self.trainer_id)

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
374

375 376 377 378 379
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
380
                  sync_mode=True,
W
Wu Yi 已提交
381 382
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
383
        """
384
        Run the transpiler. Transpile the input program.
Y
yi.wu 已提交
385 386 387 388 389 390

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
391 392
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
393 394
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
395 396 397
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
398
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
399 400
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
401 402 403
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
404 405 406 407 408 409 410 411 412 413 414

        Examples:
            .. code-block:: python

                transpiler = fluid.DistributeTranspiler()
                t.transpile(
                    trainer_id=0,
                    pservers="127.0.0.1:7000,127.0.0.1:7001",
                    trainers=2,
                    sync_mode=False,
                    current_endpoint="127.0.0.1:7000")
415 416 417
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
418 419
        if startup_program is None:
            startup_program = default_startup_program()
420
        self.origin_program = program
W
Wu Yi 已提交
421 422
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
423

W
Wu Yi 已提交
424 425
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
426
            self.origin_program._trainers_endpoints = trainers.split(",")
427 428
            self.origin_program._nccl_comm_num = self.config.nccl_comm_num
            self.origin_program._use_hierarchical_allreduce = self.config.use_hierarchical_allreduce
429 430 431 432 433
            # check use_hierarchical_allreduce options
            if self.config.use_hierarchical_allreduce:
                trainers_num = len(self.origin_program._trainers_endpoints)
                # selected automaticly
                if self.config.hierarchical_allreduce_inter_nranks <= 1:
434
                    self.config.hierarchical_allreduce_inter_nranks = core.get_cuda_device_count(
435 436 437 438 439 440 441 442 443 444 445
                    )

                assert trainers_num > self.config.hierarchical_allreduce_inter_nranks, \
                    "trainers_num:{} < hierarchical_allreduce_inter_nranks:{}".format(trainers_num, self.config.hierarchical_allreduce_inter_nranks)

                assert trainers_num % self.config.hierarchical_allreduce_inter_nranks == 0, \
                    "trainers_num:{} mod hierarchical_allreduce_inter_nranks:{} != 0".format(trainers_num, self.config.hierarchical_allreduce_inter_nranks)

                self.origin_program._hierarchical_allreduce_inter_nranks = \
                    int(self.config.hierarchical_allreduce_inter_nranks)

W
Wu Yi 已提交
446 447 448 449
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
450 451
                startup_program=startup_program,
                wait_port=self.config.wait_port)
W
Wu Yi 已提交
452 453
            return

454 455 456 457 458 459 460 461 462 463 464
        if self.config.mode == "collective":
            self._transpile_collective(
                collective_mode=self.config.collective_mode,
                trainer_id=trainer_id,
                trainers=trainers,
                current_endpoint=current_endpoint,
                startup_program=startup_program,
                main_program=program,
                wait_port=self.config.wait_port)
            return

465
        self.trainer_num = trainers
466
        self.sync_mode = sync_mode
467 468 469
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
470
        self.vars_overview = VarsDistributed()
471 472
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
473
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
474 475
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
476
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
477
        self.grad_name_to_param_name = dict()
478 479
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
480
            self.grad_name_to_param_name[grad_var.name] = param_var.name
481

Q
Qiao Longfei 已提交
482
        # get all sparse update ops
Q
Qiao Longfei 已提交
483
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
484
            self.origin_program)
Q
Qiao Longfei 已提交
485
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
486 487
        self.sparse_param_to_height_sections = dict()

T
tangwei12 已提交
488 489 490
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
491
        self.origin_program._ps_endpoint = current_endpoint
T
tangwei12 已提交
492 493 494
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

495
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
496
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
497
        self._init_splited_vars()
498

G
gongweibao 已提交
499
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
500
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
501
        send_vars = []
502 503 504 505 506 507

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
508
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
509

G
gongweibao 已提交
510
        if not self.config.slice_var_up:
511 512
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
513

514
        self.grad_name_to_send_dummy_out = dict()
515
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
516
            eplist = ps_dispatcher.dispatch(splited_vars)
517

G
gongweibao 已提交
518
            if not self.config.slice_var_up:
519 520
                assert (len(splited_vars) == 1)

521
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
522
            if len(splited_vars) == 1:
523
                splited_grad_varname = splited_vars[0].name
524 525
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Q
Qiao Longfei 已提交
526 527
                if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                    sparse_param_name = self.grad_name_to_param_name[
Q
Qiao Longfei 已提交
528
                        grad_varname]
Q
Qiao Longfei 已提交
529 530 531 532
                    if self._is_input_of_remote_sparse_update_op(
                            sparse_param_name):
                        self.sparse_param_to_height_sections[
                            sparse_param_name] = [splited_vars[0].shape[0]]
Y
Yancey1989 已提交
533
            elif len(splited_vars) > 1:
534
                orig_var = program.global_block().vars[splited_grad_varname]
535 536
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Q
Qiao Longfei 已提交
537 538 539 540
                if not self.config.runtime_split_send_recv:
                    self._insert_split_op(program, orig_var, index,
                                          splited_vars)
                    index += 1
Y
Yancey1989 已提交
541 542
            else:
                AssertionError("Can not insert the send op by original "
543
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
544

W
Wu Yi 已提交
545 546
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
547
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
548

Q
Qiao Longfei 已提交
549 550 551 552 553 554 555 556 557 558 559
            if self.config.runtime_split_send_recv:
                send_input_vars = [
                    program.global_block().vars[splited_grad_varname]
                ]
                sections = self._get_splited_var_sections(splited_vars)
                send_varnames = [var.name for var in splited_vars]
            else:
                send_input_vars = splited_vars
                sections = []
                send_varnames = []

W
Wu Yi 已提交
560 561 562 563
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
564
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
565
                index=index + 1,
566
                type="send",
Q
Qiao Longfei 已提交
567
                inputs={"X": send_input_vars},
568
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
569 570
                attrs={
                    "epmap": eplist,
Q
Qiao Longfei 已提交
571 572
                    "sections": sections,
                    "send_varnames": send_varnames,
573
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
574 575 576
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
577
                    ]
Y
Yancey1989 已提交
578
                })
Y
update  
Yancey1989 已提交
579 580
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
581 582

        if self.sync_mode:
W
Wu Yi 已提交
583 584
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
585 586 587 588
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
589
            input_deps = list(self.grad_name_to_send_dummy_out.values())
590

Y
Yancey1989 已提交
591 592
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
593
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
594
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
595 596
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
597
                    "trainer_id": self.trainer_id,
Y
Yancey1989 已提交
598
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
599
                })
Y
Yancey1989 已提交
600

G
gongweibao 已提交
601
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
602
        recv_vars = []
Y
update  
Yancey1989 已提交
603
        for _, var in enumerate(send_vars):
604
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
605
        ps_dispatcher.reset()
Y
Yancey1989 已提交
606 607
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
608
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
609 610
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
611

612 613 614 615
            distributed_var = self.vars_overview.get_distributed_var_by_slice(
                recv_vars[i].name)
            distributed_var.endpoint = ep

Y
Yancey1989 已提交
616
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
617
        all_recv_outputs = []
618
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
619
            eps = []
Q
Qiao Longfei 已提交
620
            table_names = []
Y
Yancey1989 已提交
621 622 623
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
624
                table_names.append(var.name)
W
Wu Yi 已提交
625 626 627 628
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
629
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
630
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
631

W
Wu Yi 已提交
632 633 634 635 636 637 638 639 640
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
641
            if param_varname in self.sparse_param_to_height_sections:
642 643 644 645 646 647

                for table_name in table_names:
                    distributed_var = self.vars_overview.get_distributed_var_by_slice(
                        table_name)
                    distributed_var.vtype = "RemotePrefetch"

Q
Qiao Longfei 已提交
648 649
                height_sections = self.sparse_param_to_height_sections[
                    param_varname]
Q
Qiao Longfei 已提交
650 651
                self._update_remote_sparse_update_op(
                    param_varname, height_sections, eps, table_names)
Q
Qiao Longfei 已提交
652
            else:
Q
Qiao Longfei 已提交
653 654 655
                recv_varnames = []
                if self.config.runtime_split_send_recv:
                    orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
656
                    recv_varnames = [var.name for var in splited_var]
Q
Qiao Longfei 已提交
657
                    splited_var = [orig_param]
Q
Qiao Longfei 已提交
658
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
659

Q
Qiao Longfei 已提交
660 661 662 663 664 665
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
Q
Qiao Longfei 已提交
666
                        "recv_varnames": recv_varnames,
Q
Qiao Longfei 已提交
667 668 669
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
670
                        [param_varname, recv_op_role_var_name]
Q
Qiao Longfei 已提交
671
                    })
T
typhoonzero 已提交
672

Q
qiaolongfei 已提交
673
        if self.sync_mode:
W
Wu Yi 已提交
674
            # form a WAW dependency
Q
qiaolongfei 已提交
675 676 677
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
678
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
679 680
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
681
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
682 683
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
684

685
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
686 687
            if len(splited_var) <= 1:
                continue
688
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
689
            if param_varname not in self.sparse_param_to_height_sections:
Q
Qiao Longfei 已提交
690 691 692 693 694 695 696 697 698
                if not self.config.runtime_split_send_recv:
                    program.global_block().append_op(
                        type="concat",
                        inputs={"X": splited_var},
                        outputs={"Out": [orig_param]},
                        attrs={
                            "axis": 0,
                            RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                        })
T
typhoonzero 已提交
699

G
gongweibao 已提交
700 701
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

702
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
703 704
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
705
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
706

707 708 709
        self._get_distributed_optimizer_vars()
        self.origin_program._parameters_on_pservers = self.vars_overview

W
Wu Yi 已提交
710
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
711 712 713 714 715
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
716 717 718 719 720 721 722 723 724 725 726 727

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(trainer_id, trainers=trainers, pservers=pserver_endpoints)
              trainer_program = t.get_trainer_program()
Y
yi.wu 已提交
728
        """
T
typhoonzero 已提交
729
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
730
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
731

T
typhoonzero 已提交
732
        lr_ops = self._get_lr_ops()
733
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
T
typhoonzero 已提交
734 735
        delete_ops(self.origin_program.global_block(), lr_ops)

736 737
        # delete table init op
        if self.has_distributed_lookup_table:
738 739 740
            table_var = self.startup_program.global_block().vars[
                self.table_name]
            table_param_init_op = []
741 742
            for op in self.startup_program.global_block().ops:
                if self.table_name in op.output_arg_names:
743 744 745 746 747
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
Q
Qiao Longfei 已提交
748
            table_init_op = table_param_init_op[0]
749 750 751 752 753 754
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)
755

756
        self.origin_program.__str__()
G
gongweibao 已提交
757

W
Wu Yi 已提交
758 759 760
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

761
        return self.origin_program
T
typhoonzero 已提交
762

W
Wu Yi 已提交
763
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
764 765 766 767
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
768
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
769
            eplist (list): A list of strings indicating
G
gongweibao 已提交
770 771 772 773

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
774
        startup_program = self.startup_program
G
gongweibao 已提交
775 776 777 778

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
779
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
800
                inputs={"X": []},
G
gongweibao 已提交
801 802 803
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
Q
Qiao Longfei 已提交
804
                    "trainer_id": self.trainer_id,
G
gongweibao 已提交
805 806 807
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
808 809
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
810 811 812
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
813
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
814 815
            attrs={
                "endpoints": self.pserver_endpoints,
Q
Qiao Longfei 已提交
816
                "trainer_id": self.trainer_id,
G
gongweibao 已提交
817 818 819
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
820
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
821
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
822 823
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
824
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
825
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
826 827 828 829 830 831 832 833 834 835
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
836 837 838 839 840 841 842 843
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
844 845
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
846
        Get parameter server side program.
847

Y
yi.wu 已提交
848 849
        Args:
            endpoint (str): current parameter server endpoint.
850

Y
yi.wu 已提交
851 852
        Returns:
            Program: the program for current parameter server to run.
853 854 855 856 857 858 859 860 861 862 863 864 865 866

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program = t.get_pserver_program(current_endpoint)
T
typhoonzero 已提交
867
        """
Y
yi.wu 已提交
868 869 870 871
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
872 873 874
        sys.stderr.write(
            "get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.\n"
        )
T
typhoonzero 已提交
875 876
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
877
        pserver_program.random_seed = self.origin_program.random_seed
878 879
        pserver_program._copy_dist_param_info_from(self.origin_program)

880
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
881 882 883 884 885 886 887 888
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
889 890 891 892 893
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
894 895 896 897 898 899 900 901 902
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
903
            if self.sync_mode and self.trainer_num > 1:
904
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
905 906 907 908 909 910 911 912 913
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
914

Q
qiaolongfei 已提交
915
        # step 3
916
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
917 918 919
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
920
        # step 3.2
T
typhoonzero 已提交
921 922 923 924
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
925 926
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
927
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
928
        # step 3.3
W
Wu Yi 已提交
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
947
        # Iterate through the ops, and if an op and the optimize ops
948
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
949
        # append it into the sub program.
T
typhoonzero 已提交
950 951 952

        global_ops = []

953 954 955
        # sparse grad name to param name
        sparse_grad_to_param = []

Y
wip  
yi.wu 已提交
956 957
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
958
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
959
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
960 961
                                         self.origin_program, merged_var,
                                         sparse_grad_to_param)
Y
wip  
yi.wu 已提交
962
            elif op not in lr_ops:
Q
Qiyang Min 已提交
963
                self._append_pserver_non_opt_ops(block, op)
964

Y
Yancey1989 已提交
965
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
966 967 968 969 970 971 972 973
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
974
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
975 976 977

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
978
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
979 980

            # clone ops
Y
Yancey1989 已提交
981 982
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
983
                # clone sub_block of op
Y
Yancey1989 已提交
984
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
985 986

            # reset the block of op
W
Wu Yi 已提交
987
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
988

989
        # append lr decay ops to the child block if exists
990
        lr_ops = self._get_lr_ops()
991 992
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
993
        if len(lr_ops) > 0:
W
Wu Yi 已提交
994
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
995
                pserver_program.num_blocks - 1)
996
            optimize_blocks.append(lr_decay_block)
997
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
998
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
999
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
1000 1001
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
1002

T
typhoonzero 已提交
1003
        # append op to the current block
Q
qiaolongfei 已提交
1004
        grad_to_block_id = []
Q
qiaolongfei 已提交
1005
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
1006
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
1007
            per_opt_block = pserver_program._create_block(pre_block_idx)
1008
            optimize_blocks.append(per_opt_block)
1009
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1010
            # append grad merging ops before clip and weight decay
1011 1012
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
1013
            for _, op in enumerate(self.optimize_ops):
1014
                # find the origin grad var before clipping/L2Decay,
Q
Qiao Longfei 已提交
1015
                # merged_var should be the input var name of L2Decay
1016 1017 1018
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
1019 1020 1021
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
1022 1023 1024 1025 1026 1027
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
1028
                            op not in global_ops:
1029 1030 1031 1032 1033
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
1034

1035
        # dedup grad to ids list
W
Wu Yi 已提交
1036
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
1037
        # append global ops
1038
        if global_ops:
W
Wu Yi 已提交
1039
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1040
                pserver_program.num_blocks - 1)
1041
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
1042
            for glb_op in global_ops:
X
Xi Chen 已提交
1043
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
1044
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
1045

1046
        # process distributed lookup_table
Q
qiaolongfei 已提交
1047
        prefetch_var_name_to_block_id = []
1048 1049
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
1050
            table_opt_block = self._create_table_optimize_block(
1051
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
1052
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
1053
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
1054
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
1055 1056
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
1057

T
tangwei12 已提交
1058
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
1059 1060
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
1061

1062
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
1063 1064
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
1065 1066 1067 1068 1069 1070
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
1071
        attrs = {
1072
            "optimize_blocks": optimize_blocks,
1073 1074 1075
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
1076
            "grad_to_block_id": grad_to_block_id,
1077
            "sparse_grad_to_param": sparse_grad_to_param,
1078
        }
T
tangwei12 已提交
1079 1080

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
1081
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
1082 1083
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
1084

T
tangwei12 已提交
1085 1086 1087 1088
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
1089 1090 1091 1092 1093
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
1094
            attrs=attrs)
1095

W
Wu Yi 已提交
1096
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
1097 1098
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
1099 1100
        return pserver_program

W
Wu Yi 已提交
1101 1102 1103 1104 1105 1106
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
1107

W
Wu Yi 已提交
1108 1109
        Returns:
            tuple: (main_program, startup_program), of type "Program"
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program, pserver_startup_program = t.get_pserver_programs(current_endpoint)
W
Wu Yi 已提交
1124 1125
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
1126 1127
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
1128 1129
        return pserver_prog, pserver_startup

1130 1131
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
1132
                            pserver_program=None,
1133
                            startup_program=None):
T
typhoonzero 已提交
1134
        """
W
Wu Yi 已提交
1135 1136
        **Deprecated**

T
typhoonzero 已提交
1137 1138 1139
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
1140 1141 1142

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
1143 1144
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
1145
                when initalizing
1146

Y
yi.wu 已提交
1147 1148
        Returns:
            Program: parameter server side startup program.
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163

        Examples:
	    .. code-block:: python
            
                pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                current_endpoint = "192.168.0.1:6174"
                trainer_id = 0
                trainers = 4

                t = fluid.DistributeTranspiler()
                t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
T
typhoonzero 已提交
1164 1165
        """
        s_prog = Program()
W
Wu Yi 已提交
1166
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
1167
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
1179
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
1180
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
1181
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
1182 1183 1184 1185
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
1186
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
1187 1188
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
1199 1200

            if op_on_pserver:
1201 1202 1203
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
1204
                if op.type in [
1205 1206
                        "gaussian_random", "fill_constant", "uniform_random",
                        "truncated_gaussian_random"
T
typhoonzero 已提交
1207
                ]:
W
Wu Yi 已提交
1208
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
1209 1210 1211 1212
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
1213
                    attrs=op.all_attrs())
W
Wu Yi 已提交
1214 1215 1216 1217 1218 1219 1220 1221 1222
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
1223

T
typhoonzero 已提交
1224 1225
        return s_prog

1226 1227
    # ====================== private transpiler functions =====================
    def _get_slice_var_info(self, slice_var):
T
tangwei12 已提交
1228
        block_suffix = "block"
1229 1230 1231
        block_idx = 0
        offset = 0
        is_slice = False
1232

1233
        orig_var_name, block_name, _ = self._get_varname_parts(slice_var.name)
1234

1235 1236
        if not block_name:
            return is_slice, block_idx, offset
1237

1238 1239 1240 1241
        block_idx = int(block_name.split(block_suffix)[1])
        skip_dim0 = 0
        slice_vars = self.param_var_mapping[orig_var_name]

T
tangwei12 已提交
1242 1243 1244 1245 1246
        orig_dim1_flatten = 1

        if len(slice_vars[0].shape) >= 2:
            orig_dim1_flatten = reduce(lambda x, y: x * y,
                                       slice_vars[0].shape[1:])
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309

        for slice_var in slice_vars[:block_idx]:
            skip_dim0 += slice_var.shape[0]

        offset = skip_dim0 * orig_dim1_flatten
        is_slice = True
        return is_slice, block_idx, offset

    def _get_distributed_optimizer_vars(self):
        def _get_distributed_optimizer_var(endpoint):
            opt_op_on_pserver = []
            for _, op in enumerate(self.optimize_ops):
                if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                        endpoint, op):
                    opt_op_on_pserver.append(op)

            for opt_op in opt_op_on_pserver:
                dist_var = None
                for key in opt_op.input_names:
                    if key == "Param":
                        param_name = opt_op.input(key)[0]
                        dist_var = self.vars_overview.get_distributed_var_by_origin_and_ep(
                            param_name, endpoint)
                        break
                for key in opt_op.input_names:
                    if key in ["Param", "Grad", "LearningRate"]:
                        continue
                    origin_var = self.origin_program.global_block().vars[
                        opt_op.input(key)[0]]
                    # update accumulator variable shape
                    new_shape = self._get_optimizer_input_shape(
                        opt_op.type, key, origin_var.shape,
                        dist_var.slice.shape)

                    if new_shape == dist_var.slice.shape:
                        splited_var = VarStruct(
                            name=origin_var.name,
                            shape=new_shape,
                            dtype=origin_var.dtype,
                            type=origin_var.type,
                            lod_level=origin_var.lod_level,
                            persistable=origin_var.persistable)

                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=splited_var,
                            is_slice=dist_var.is_slice,
                            block_id=dist_var.block_id,
                            offset=dist_var.offset,
                            vtype="Optimizer",
                            endpoint=endpoint)
                    else:
                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=origin_var,
                            is_slice=False,
                            block_id=0,
                            offset=0,
                            vtype="Optimizer",
                            endpoint=endpoint)

        for ep in self.pserver_endpoints:
            _get_distributed_optimizer_var(ep)
1310

Y
yi.wu 已提交
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1350
    def _init_splited_vars(self):
Y
yi.wu 已提交
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1374
        if self.config.slice_var_up:
Y
yi.wu 已提交
1375 1376
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1377 1378 1379
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1380
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1381 1382
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1383 1384 1385
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1386 1387 1388 1389
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1390 1391
        assert (len(grad_blocks) == len(param_blocks))

1392
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1393 1394
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410

        for orig_name, splited_vars in self.param_var_mapping.items():
            orig_var = self.origin_program.global_block().var(orig_name)

            for splited_var in splited_vars:
                is_slice, block_id, offset = self._get_slice_var_info(
                    splited_var)

                self.vars_overview.add_distributed_var(
                    origin_var=orig_var,
                    slice_var=splited_var,
                    block_id=block_id,
                    offset=offset,
                    is_slice=is_slice,
                    vtype="Param")

1411
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1412 1413 1414 1415
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1416
        # dict(grad_splited_var -> param_splited_var)
1417
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1418 1419 1420
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1421
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1422
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1423 1424

        # create mapping of endpoint -> split var to create pserver side program
1425
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1426 1427 1428 1429 1430 1431 1432 1433 1434
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1435
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1436 1437
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1438
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1439
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1440 1441
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1442 1443
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1444 1445 1446 1447 1448 1449

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1450 1451
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1452
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1453 1454 1455
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1456 1457
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1458 1459
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1460 1461 1462
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1463
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1464
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1465 1466

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1467
                    self.all_out_emb_vars.append(out_var)
1468 1469

                    # delete lookup_table_op
1470
                    delete_ops(program.global_block(), [op])
1471 1472 1473
                    # break for loop
                    break

S
seiriosPlus 已提交
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1520
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1521
        # 2. add split_ids_op and send_op to send gradient to pservers
1522

1523 1524
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1525
        table_grad_name = grad_var_name(self.table_name)
1526 1527 1528 1529
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1530
                program.global_block()._insert_op(
1531 1532 1533 1534 1535
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1536 1537
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1538
                program.global_block()._insert_op(
1539
                    index=op_index + 2,
1540
                    type="send",
1541
                    inputs={'X': self.trainer_side_table_grad_list},
1542 1543 1544 1545 1546
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1547 1548
                    attrs={
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1549
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1550 1551 1552 1553 1554
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1555
                    })
1556 1557 1558 1559 1560 1561
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1562
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1588
        return prefetch_var_name_to_block_id
1589 1590

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1591
                                     pre_block_idx, grad_to_block_id):
1592
        # STEP: create table optimize block
1593
        table_opt_block = pserver_program._create_block(pre_block_idx)
1594
        # create table param and grad var in pserver program
1595 1596
        # create table optimize block in pserver program
        table_opt_op = [
Q
Qiao Longfei 已提交
1597 1598 1599
            op for op in self.optimize_ops
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1600 1601
        ][0]

Y
Yancey1989 已提交
1602 1603
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1604

T
tangwei12 已提交
1605
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1606 1607
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1608 1609 1610
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1611 1612
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1613
            shape=table_shape,
Y
Yancey1989 已提交
1614 1615 1616
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1617

1618 1619
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1620
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1621
            self.origin_program.global_block().vars[grad_var_name(
1622
                self.table_name)])
1623

1624 1625 1626
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1627

1628 1629 1630
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1631
            pserver_side_table_grad_list = [
1632 1633 1634 1635 1636 1637 1638 1639 1640
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1641
            # append sum op for pserver_side_table_grad_list
1642 1643
            table_opt_block.append_op(
                type="sum",
1644
                inputs={"X": pserver_side_table_grad_list},
1645 1646
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1647 1648
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1649
            origin_grad_name = grad_var.name
1650 1651
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1652 1653
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1654
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1655
            grad_var = pserver_program.global_block()._rename_var(
1656
                origin_grad_name, splited_grad_name)
1657 1658 1659 1660 1661 1662 1663

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1664
        # only support sgd now
1665 1666 1667
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1668
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1669

1670 1671 1672
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1673 1674
        return table_opt_block

T
tangwei12 已提交
1675 1676 1677 1678 1679
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
1680
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1681
            name="kLookupTablePath",
T
tangwei12 已提交
1682 1683
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1684

W
Wu Yi 已提交
1685
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1686
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1687 1688 1689 1690
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1691
            attrs={'file_path': "none"})
T
tangwei12 已提交
1692 1693 1694

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1695 1696 1697 1698 1699
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1700
        Create vars for each split.
T
typhoonzero 已提交
1701 1702
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1703 1704 1705 1706
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1707
        Returns:
1708
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1709
                from original var name to each var split.
T
typhoonzero 已提交
1710
        """
1711 1712

        # varname->[(block_id, current_block_size)]
1713
        block_map = collections.OrderedDict()
1714

1715
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1716 1717
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1718
            if varname not in block_map:
T
typhoonzero 已提交
1719
                block_map[varname] = []
1720
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1721

M
minqiyang 已提交
1722
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1723
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1724
            if len(splited) == 1:
1725
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1726
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1727
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1728
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1729 1730 1731 1732 1733
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1734
                continue
T
typhoonzero 已提交
1735
            var_mapping[varname] = []
T
typhoonzero 已提交
1736 1737 1738 1739
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1740

T
typhoonzero 已提交
1741
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1742
                size = block[1]
M
minqiyang 已提交
1743
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1744 1745 1746
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1747
                new_var_name = ""
1748
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1749
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1750
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1751 1752
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1753
                                   (varname, i)
T
typhoonzero 已提交
1754
                var = program.global_block().create_var(
T
typhoonzero 已提交
1755 1756
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1757
                    dtype=orig_var.dtype,
1758
                    type=orig_var.type,
T
typhoonzero 已提交
1759
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1760
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1761
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1762
        return var_mapping
T
done  
typhoonzero 已提交
1763

1764
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1765 1766 1767 1768 1769 1770
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1771
            persistable=persistable)
T
done  
typhoonzero 已提交
1772

Q
Qiao Longfei 已提交
1773 1774 1775 1776 1777 1778 1779
    @staticmethod
    def _get_splited_var_sections(splited_vars):
        height_sections = []
        for v in splited_vars:
            height_sections.append(v.shape[0])
        return height_sections

Y
Yancey1989 已提交
1780
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Q
Qiao Longfei 已提交
1781 1782
        height_sections = self._get_splited_var_sections(splited_vars)

Y
update  
Yancey1989 已提交
1783
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
Q
Qiao Longfei 已提交
1784
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
1785
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
1786 1787
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
1788
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1789 1790 1791 1792
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1793 1794 1795 1796
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1797
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
W
Wu Yi 已提交
1798
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1799 1800 1801 1802
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1803
                attrs={
Q
Qiao Longfei 已提交
1804
                    "sections": height_sections,
1805 1806
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1807 1808 1809
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1810

T
typhoonzero 已提交
1811 1812 1813 1814
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1815
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
1828
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
1829 1830
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1831 1832
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1833
                return param_shape
1834 1835 1836
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
1837 1838 1839
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
1840 1841
        elif op_type == "sgd":
            pass
1842 1843 1844 1845
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
1846 1847
        return orig_shape

1848 1849
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1850
        orig_var_name = ""
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1861
        else:
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
1884
            return None
1885 1886 1887 1888
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1889
        else:
1890
            merged_var_name = orig_varname
1891 1892

        merged_var = pserver_block.vars[merged_var_name]
1893 1894 1895
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1896
            for i in range(self.trainer_num):
1897
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1898
                                   (merged_var_name, i)
1899 1900 1901 1902
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1903 1904
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
1905 1906 1907 1908 1909
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
1910
        return merged_var
T
typhoonzero 已提交
1911

W
Wu Yi 已提交
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

1974
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1975 1976
                            grad_to_block_id, origin_program, merged_var,
                            sparse_grad_to_param):
1977
        program = optimize_block.program
T
typhoonzero 已提交
1978
        pserver_block = program.global_block()
1979
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
1990 1991 1992 1993
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
1994
        for key in opt_op.input_names:
T
typhoonzero 已提交
1995
            if key == "Grad":
W
Wu Yi 已提交
1996 1997 1998
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
Q
Qiao Longfei 已提交
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
                    # Note!! This is for l2decay on sparse gradient, because it will create a new tensor for
                    # decayed gradient but not inplace modify the origin one
                    origin_grad_name = opt_op.input(key)[0]
                    if core.kNewGradSuffix(
                    ) in origin_grad_name and pserver_block.has_var(
                            origin_grad_name):
                        new_grad = pserver_block.var(origin_grad_name)
                        new_inputs[key] = new_grad
                    else:
                        new_inputs[key] = merged_var
T
typhoonzero 已提交
2009
            elif key == "Param":
W
Wu Yi 已提交
2010
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
2011 2012
                if not param_block:
                    return
T
typhoonzero 已提交
2013
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2014
                    name=param_block.name,
T
typhoonzero 已提交
2015
                    persistable=True,
T
typhoonzero 已提交
2016 2017 2018
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
2019
            elif key == "LearningRate":
2020
                # learning rate variable has already be created by non-optimize op,
2021
                # don't create it once again.
2022
                lr_varname = opt_op.input(key)[0]
2023
                if lr_varname in pserver_block.vars:
2024 2025 2026 2027 2028 2029 2030 2031 2032
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
2033

T
typhoonzero 已提交
2034
        for key in opt_op.input_names:
2035
            new_shape = None
W
Wu Yi 已提交
2036
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
2037
                continue
2038
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
2039
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
2040
            # update accumulator variable shape
2041 2042
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape)
T
typhoonzero 已提交
2043
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2044 2045 2046 2047 2048
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
2049

2050
        # change output's ParamOut variable
2051 2052
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
2053
        outputs["ParamOut"] = new_inputs["Param"]
2054
        optimize_block.append_op(
T
typhoonzero 已提交
2055 2056
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
2057
            outputs=outputs,
G
gongweibao 已提交
2058
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2059

2060 2061 2062 2063 2064 2065
        # record sparse grad to param name
        if new_inputs["Grad"].type == core.VarDesc.VarType.SELECTED_ROWS:
            sparse_grad_to_param.append(
                str(new_inputs["Grad"].name) + ":" + str(new_inputs["Param"]
                                                         .name))

2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
            a@GRAD -> a@GRAD (a is not splited)
            fc_0.w_0 -> fc_0.w_0.block_0
            fc_0.w_0 -> fc_0.w_0 (weight is not splited)
            _generated_var_123 -> None
        """
2077
        grad_block = None
M
minqiyang 已提交
2078
        for _, g in six.iteritems(var_dict):
2079
            if self._orig_varname(g.name) == self._orig_varname(var.name):
2080
                # skip per trainer vars
2081
                if g.name.find(".trainer_") == -1:
2082
                    # only param or grads have splited blocks
2083 2084
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or \
                            self._orig_varname(g.name) in self.param_name_to_grad_name:
2085 2086
                        grad_block = g
                        break
2087 2088
        return grad_block

Q
Qiyang Min 已提交
2089 2090 2091
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2092
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
2093 2094 2095 2096
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2097
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2098 2099 2100

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2101
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
2102 2103 2104 2105
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2106
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2107

Y
Yancey1989 已提交
2108
        return block.append_op(
G
gongweibao 已提交
2109
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
2110 2111

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
2112
        program = optimize_block.program
2113
        # Append the ops for parameters that do not need to be optimized/updated
2114 2115
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2116
        for key, varlist in six.iteritems(inputs):
2117 2118
            if not isinstance(varlist, list):
                varlist = [varlist]
2119 2120 2121
            for i in range(len(varlist)):
                var = varlist[i]
                # for ops like clipping and weight decay, get the splited var (xxx.block0)
2122
                # for inputs/outputs
2123
                grad_block = self._get_pserver_grad_param_var(
2124 2125
                    var, program.global_block().vars)
                if grad_block:
2126
                    varlist[i] = grad_block
2127
                elif var.name not in program.global_block().vars:
2128 2129 2130 2131 2132
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
2133

2134 2135
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2136
        for key, varlist in six.iteritems(outputs):
2137 2138
            if not isinstance(varlist, list):
                varlist = [varlist]
2139 2140 2141
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
2142 2143
                    var, program.global_block().vars)
                if grad_block:
2144
                    varlist[i] = grad_block
2145
                elif var.name not in program.global_block().vars:
2146 2147 2148 2149 2150
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
2151

Y
Yancey1989 已提交
2152
        return optimize_block.append_op(
T
typhoonzero 已提交
2153
            type=opt_op.type,
T
typhoonzero 已提交
2154 2155
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
2156
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2157

2158 2159 2160 2161
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
2162
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
2163
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
2164 2165 2166 2167 2168 2169
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
2170 2171
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
2172 2173 2174 2175 2176 2177
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

2178
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
2179
        if "Param" in op.input_names and \
T
tangwei12 已提交
2180
                "LearningRate" in op.input_names:
2181 2182 2183 2184 2185 2186 2187
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
2188
        if op.input("Param")[0] in param_names:
2189 2190 2191
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
2192
                param = op.input("Param")[0]
T
typhoonzero 已提交
2193
                if same_or_split_var(n, param) and n != param:
2194 2195 2196
                    return True
            return False

T
typhoonzero 已提交
2197
    def _get_input_map_from_op(self, varmap, op):
2198
        """Returns a dict from op input name to the vars in varmap."""
2199
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
2211
        """Returns a dict from op output name to the vars in varmap."""
2212
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2213 2214 2215 2216 2217 2218 2219 2220 2221
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
2222 2223

    def _get_lr_ops(self):
2224 2225 2226
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
X
fix  
Xin Pan 已提交
2227 2228 2229 2230
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
2231 2232 2233 2234 2235
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
2236 2237 2238 2239
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
2240
            if self._is_optimizer_op(op):
2241 2242 2243 2244
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
2245
        block = self.origin_program.global_block()
2246 2247 2248 2249 2250
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
2251

2252 2253 2254 2255 2256
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
2257
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
2258 2259 2260 2261 2262 2263
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
2264 2265
                    # we only need to append op for once
                    break
2266
        return lr_ops
Y
Yancey1989 已提交
2267

W
Wu Yi 已提交
2268 2269 2270 2271 2272
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
2273 2274
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
2275 2276 2277
            return True
        return False

Y
Yancey1989 已提交
2278
    def _get_optimize_pass(self):
2279
        """
2280
        Get optimizer operators, parameters and gradients from origin_program
2281 2282
        Returns:
            opt_ops (list): optimize operators.
Q
Qiao Longfei 已提交
2283
            params_grads (dict): parameter->gradient.
2284
        """
Y
Yancey1989 已提交
2285 2286 2287
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
2288 2289
        # tmp set to dedup
        optimize_params = set()
2290
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
2291
        for op in block.ops:
W
Wu Yi 已提交
2292
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
2293
                opt_ops.append(op)
2294 2295 2296 2297 2298 2299
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
2300 2301
                        params_grads.append([
                            origin_var_dict[param_name],
2302
                            origin_var_dict[grad_name]
2303
                        ])
Y
Yancey1989 已提交
2304 2305 2306
            else:
                pass
        return opt_ops, params_grads