selu_op.cc 4.3 KB
Newer Older
C
chengduo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <memory>
C
chengduo 已提交
16
#include <string>
17
#include <unordered_map>
C
chengduo 已提交
18

19 20
#include "paddle/fluid/operators/common_infer_shape_functions.h"

C
chengduo 已提交
21 22 23 24 25 26 27 28 29 30 31
namespace paddle {
namespace operators {

class SeluOp : public framework::OperatorWithKernel {
 public:
  SeluOp(const std::string &type, const framework::VariableNameMap &inputs,
         const framework::VariableNameMap &outputs,
         const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
32
    return UnaryOpUnchangedInferShape(ctx);
C
chengduo 已提交
33 34 35 36 37 38
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
39
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
C
chengduo 已提交
40 41 42 43 44
  }
};

class SeluOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
45
  std::unordered_map<std::string, std::string> &GetInputOutputWithSameType()
C
chengduo 已提交
46
      const override {
47 48
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
C
chengduo 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
  }
};

class SeluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "The input tensor of selu operator.");
    AddOutput("Out", "The output tensor of selu operator.");
    AddAttr<float>("scale",
                   "(float) the default value is 1.0507~. For more "
                   "information about this value, please refer to:"
                   "https://arxiv.org/abs/1706.02515.")
        .SetDefault(1.0507009873554804934193349852946);
    AddAttr<float>("alpha",
                   "(float) the default value is 1.6732~. For more "
                   "information about this value, please refer to:"
                   "https://arxiv.org/abs/1706.02515.")
        .SetDefault(1.6732632423543772848170429916717);
    AddComment(R"DOC(
Selu Operator.

The equation is:
$$
f(x) =\lambda*
\begin{cases}
 \quad \quad   x,  \quad \quad \quad \text{if} \ x > 0 \\
 \alpha * e^x - \alpha,  \qquad  \text{if} \ x <= 0
\end{cases}
$$

The input `X` can carry the LoD (Level of Details) information,
or not. And the output shares the LoD information with input `X`.
)DOC");
  }
};

H
hong 已提交
85 86
template <typename T>
class SeluGradMaker : public framework::SingleGradOpMaker<T> {
C
chengduo 已提交
87
 public:
H
hong 已提交
88
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
C
chengduo 已提交
89

90
  void Apply(GradOpPtr<T> grad_op) const override {
C
chengduo 已提交
91
    grad_op->SetType("selu_grad");
H
hong 已提交
92 93 94
    grad_op->SetInput("Out", this->Output("Out"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
C
chengduo 已提交
95 96 97 98 99 100 101 102 103
    grad_op->SetAttrMap(this->Attrs());
  }
};

class SeluGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
104 105 106
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@GRAD", "selu_grad");
    OP_INOUT_CHECK(ctx->HasInput("Out"), "Input", "Out", "selu_grad");
C
chengduo 已提交
107 108 109 110 111 112 113 114
    auto x_grad_name = framework::GradVarName("X");
    ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("Out"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
115
        OperatorWithKernel::IndicateVarDataType(ctx, "Out"), ctx.GetPlace());
C
chengduo 已提交
116 117 118 119 120 121 122 123 124
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OPERATOR(selu, ops::SeluOp, ops::SeluOpMaker, ops::SeluOpInferVarType,
H
hong 已提交
125 126
                  ops::SeluGradMaker<paddle::framework::OpDesc>,
                  ops::SeluGradMaker<paddle::imperative::OpBase>);
C
chengduo 已提交
127
REGISTER_OPERATOR(selu_grad, ops::SeluGradOp);