segment_pooling.cu 16.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <algorithm>
16 17 18
#include "paddle/fluid/operators/gather.cu.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/segment_pooling.h"
19 20
#include "paddle/fluid/platform/device/gpu/gpu_launch_config.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
21 22 23 24 25 26 27

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T, typename Index, int DimTileSize>
28 29 30
__global__ void SegmentSumIdsKernel(const Index* segment_ids, T* summed_ids,
                                    const Index input_length_size,
                                    const Index total_stripe_count) {
31
  CUDA_KERNEL_LOOP(stripe_index, total_stripe_count) {
32 33
    const Index segment_offset = stripe_index;
    const Index dim_index_base = stripe_index * Index(DimTileSize);
34 35 36 37 38 39 40 41
    const Index actual_height =
        min(Index(DimTileSize), input_length_size - dim_index_base);

    Index first_segment_id = segment_ids[dim_index_base];
    Index last_segment_id = -1;
    if (dim_index_base > 0) {
      last_segment_id = segment_ids[dim_index_base - 1];
    }
42 43 44 45 46 47 48 49 50 51 52 53 54 55
    T sum = T(0);
    for (Index j = 0; j < actual_height; j++) {
      Index current_segment_id = segment_ids[dim_index_base + j];
      PADDLE_ENFORCE(current_segment_id >= last_segment_id,
                     "the segment ids should be sorted, but got "
                     "segment_ids[%d]:%d > segment_ids[%d]:%d.",
                     dim_index_base + j - 1, dim_index_base + j,
                     last_segment_id, current_segment_id);
      if (current_segment_id > last_segment_id) {
        for (Index interval_id = last_segment_id + 1;
             interval_id < current_segment_id; ++interval_id) {
          *(summed_ids + interval_id) = 0;
        }
        if (j > 0) {
56 57 58 59 60 61 62 63
          if (last_segment_id == first_segment_id) {
            platform::CudaAtomicAdd(summed_ids + last_segment_id, sum);
          } else {
            *(summed_ids + last_segment_id) = sum;
          }
          sum = T(0);
        }
      }
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
      sum += T(1);
      last_segment_id = current_segment_id;
    }
    platform::CudaAtomicAdd(summed_ids + last_segment_id, sum);
  }
}

template <typename T, typename Index, int DimTileSize>
__global__ void SegmentMeanKernel(const Index* segment_ids, const T* input,
                                  T* output, T* summed_ids,
                                  const Index input_length_size,
                                  const Index inner_dim_size,
                                  const Index output_length_size,
                                  const Index total_stripe_count) {
  CUDA_KERNEL_LOOP(stripe_index, total_stripe_count) {
    const Index segment_offset = stripe_index % inner_dim_size;
    const Index dim_index_base =
        stripe_index / inner_dim_size * Index(DimTileSize);
    const Index actual_height =
        min(Index(DimTileSize), input_length_size - dim_index_base);

    Index first_segment_id = segment_ids[dim_index_base];
    Index last_segment_id = -1;
    if (dim_index_base > 0) {
      last_segment_id = segment_ids[dim_index_base - 1];
89 90 91 92 93
    }
    T sum = T(0);
    for (Index j = 0; j < actual_height; j++) {
      Index current_segment_id = segment_ids[dim_index_base + j];
      if (current_segment_id > last_segment_id) {
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
        // reset the interval value which do not have corresponding ids.
        for (Index interval_id = last_segment_id + 1;
             interval_id < current_segment_id; ++interval_id) {
          *(output + interval_id * inner_dim_size + segment_offset) = T(0);
        }

        if (j > 0) {
          Index output_index =
              last_segment_id * inner_dim_size + segment_offset;

          if (last_segment_id == first_segment_id) {
            platform::CudaAtomicAdd(output + output_index,
                                    sum / *(summed_ids + last_segment_id));
          } else {
            *(output + output_index) = sum / *(summed_ids + last_segment_id);
          }
          sum = T(0);
111 112 113 114 115
        }
      }
      sum += input[(dim_index_base + j) * inner_dim_size + segment_offset];
      last_segment_id = current_segment_id;
    }
116
    Index output_index = last_segment_id * inner_dim_size + segment_offset;
117 118 119 120 121 122
    platform::CudaAtomicAdd(output + output_index,
                            sum / *(summed_ids + last_segment_id));
  }
}

template <typename T, typename Index, typename Helper, typename Pool>
123 124 125
__global__ void __launch_bounds__(1024, 1)
    SegmentOpsKernel(const Index* segment_ids, const T* input, T* output,
                     Helper h, Pool pool) {
126 127 128
  CUDA_KERNEL_LOOP(stripe_index, h.total_stripe_count) {
    Index segment_offset, dim_index_base, actual_height;
    Index inner_dim_size = h.inner_dim_size;
129
    h.calculate(stripe_index, &segment_offset, &dim_index_base, &actual_height);
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

    T minmax = pool.initial();
    Index first_segment_id = segment_ids[dim_index_base];
    // -1 is for the start value when interval_id = 0
    Index last_segment_id = -1;
    if (dim_index_base > 0) {
      last_segment_id = segment_ids[dim_index_base - 1];
    }

    for (Index j = 0; j < actual_height; j++) {
      Index current_segment_id = segment_ids[dim_index_base + j];
      // ensure the segment_ids is sorted.
      PADDLE_ENFORCE(current_segment_id >= last_segment_id,
                     "The segment ids should be sorted, but got "
                     "segment_ids[%d]:%d > segment_ids[%d]:%d.",
                     dim_index_base + j - 1, dim_index_base + j,
                     last_segment_id, current_segment_id);

      if (current_segment_id > last_segment_id) {
        // reset the interval value which do not have corresponding ids.
        for (Index interval_id = last_segment_id + 1;
             interval_id < current_segment_id; ++interval_id) {
152
          *(output + interval_id * inner_dim_size + segment_offset) = T(0);
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
        }
        // don't update result when j=0
        if (j > 0) {
          const Index output_index =
              last_segment_id * inner_dim_size + segment_offset;
          if (last_segment_id == first_segment_id) {
            pool.atomic(output + output_index, minmax);
          } else {
            *(output + output_index) = minmax;
          }
          minmax = pool.initial();
        }
      }
      pool.compute(
          input[(dim_index_base + j) * inner_dim_size + segment_offset],
          &minmax);
      last_segment_id = current_segment_id;
    }
    const Index output_index =
        last_segment_id * inner_dim_size + segment_offset;
    pool.atomic(output + output_index, minmax);
  }
}

template <typename T, typename Index, typename Helper>
__global__ void SegmentIndexGradKernel(const Index* segment_ids, const T* input,
                                       const T* output, const T* out_grad,
                                       T* in_grad, Helper h) {
  CUDA_KERNEL_LOOP(stripe_index, h.total_stripe_count) {
    Index segment_offset, dim_index_base, actual_height;
183
    h.calculate(stripe_index, &segment_offset, &dim_index_base, &actual_height);
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

    for (Index j = 0; j < actual_height; j++) {
      Index current_segment_id = segment_ids[dim_index_base + j];
      Index input_index =
          (dim_index_base + j) * h.inner_dim_size + segment_offset;
      Index output_index =
          current_segment_id * h.inner_dim_size + segment_offset;
      if (input[input_index] == output[output_index]) {
        in_grad[input_index] = out_grad[output_index];
      }
    }
  }
}

template <class T>
class MaxPool {
 public:
  DEVICE inline T initial() { return static_cast<T>(-FLT_MAX); }
  DEVICE inline void compute(const T& x, T* y) { *y = *y > x ? *y : x; }
  DEVICE inline T atomic(T* address, const T val) {
    return platform::CudaAtomicMax(address, val);
  }
};

template <class T>
class MinPool {
 public:
  DEVICE inline T initial() { return static_cast<T>(FLT_MAX); }
  DEVICE inline void compute(const T& x, T* y) { *y = *y < x ? *y : x; }
  DEVICE inline T atomic(T* address, const T val) {
    return platform::CudaAtomicMin(address, val);
  }
};

template <class T>
class SumPool {
 public:
  DEVICE inline T initial() { return static_cast<T>(0); }
  DEVICE inline void compute(const T& x, T* y) { *y = *y + x; }
  DEVICE inline T atomic(T* address, const T val) {
    return platform::CudaAtomicAdd(address, val);
  }
};

template <class T>
class ArrangeHelper {
 public:
  const T input_total_size;
  const T input_length_size;
  const T output_length_size;
  T inner_dim_size;
  T total_stripe_count;
  const T DimTileSize = 8;

  ArrangeHelper(T a, T b, T c)
      : input_total_size(a), input_length_size(b), output_length_size(c) {
    T input_outer_dim_num_stripe =
        (input_length_size + DimTileSize - 1) / DimTileSize;
    inner_dim_size = input_total_size / input_length_size;
    total_stripe_count = inner_dim_size * input_outer_dim_num_stripe;
  }

246 247 248 249 250
  DEVICE inline void calculate(T stripe_index, T* segment_offset,
                               T* dim_index_base, T* actual_height) {
    *segment_offset = stripe_index % inner_dim_size;
    *dim_index_base = stripe_index / inner_dim_size * DimTileSize;
    *actual_height = min(DimTileSize, input_length_size - *dim_index_base);
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
  }
};

template <typename T, typename Index>
void SegmentPoolCUDAGradFunctor(const platform::CUDADeviceContext& ctx,
                                const framework::Tensor& input,
                                const framework::Tensor& segment_ids,
                                const framework::Tensor& output,
                                const framework::Tensor& out_grad,
                                framework::Tensor* in_grad,
                                const std::string pooltype = "SUM") {
  auto h = ArrangeHelper<Index>(input.numel(), segment_ids.dims()[0],
                                output.dims()[0]);
  auto config = platform::GetGpuLaunchConfig1D(ctx, h.total_stripe_count);
  if (pooltype == "MAX" || pooltype == "MIN") {
    SegmentIndexGradKernel<T, Index, ArrangeHelper<Index>><<<
        config.block_per_grid.x, config.thread_per_block.x, 0, ctx.stream()>>>(
        segment_ids.data<Index>(), input.data<T>(), output.data<T>(),
        out_grad.data<T>(), in_grad->data<T>(), h);
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Unsupported segment pooling grad operation, Only MAX, MIN "
        "available, but got %s.",
        pooltype));
  }
}

template <typename T>
__global__ void SimpleDiv(T* x, const T* y, const int len, const int dim) {
  for (int i = blockIdx.x; i < len; i += gridDim.x) {
    __shared__ T y_i;
    auto base = i * dim;
    if (threadIdx.x == 0) {
      y_i = y[i];
    }
    __syncthreads();
    for (int j = threadIdx.x; j < dim; j += blockDim.x) {
      x[base + j] /= y_i;
    }
  }
}

template <typename T, typename IndexT>
class SegmentPoolFunctor<platform::CUDADeviceContext, T, IndexT> {
 public:
  void operator()(const platform::CUDADeviceContext& ctx,
                  const framework::Tensor& input,
                  const framework::Tensor& segment_ids,
                  framework::Tensor* output,
                  framework::Tensor* summed_ids = nullptr,
                  const std::string pooltype = "SUM") {
302 303 304 305 306 307 308 309 310 311 312 313 314 315
    if (pooltype == "MEAN") {
      // Sum the segment id num first
      T DimTileSize = 8;
      auto input_length_size = segment_ids.numel();
      auto total_stripe_count =
          (input_length_size + DimTileSize - 1) / DimTileSize;
      auto config = platform::GetGpuLaunchConfig1D(ctx, total_stripe_count);
      SegmentSumIdsKernel<
          T, IndexT, IndexT(8)><<<config.block_per_grid.x,
                                  config.thread_per_block.x, 0, ctx.stream()>>>(
          segment_ids.data<IndexT>(), summed_ids->data<T>(), input_length_size,
          total_stripe_count);
    }

316 317 318 319
    auto h = ArrangeHelper<IndexT>(input.numel(), segment_ids.dims()[0],
                                   output->dims()[0]);
    auto config = platform::GetGpuLaunchConfig1D(ctx, h.total_stripe_count);
    if (pooltype == "MEAN") {
320
      SegmentMeanKernel<
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
          T, IndexT, IndexT(8)><<<config.block_per_grid.x,
                                  config.thread_per_block.x, 0, ctx.stream()>>>(
          segment_ids.data<IndexT>(), input.data<T>(), output->data<T>(),
          summed_ids->data<T>(), h.input_length_size, h.inner_dim_size,
          h.output_length_size, h.total_stripe_count);
    } else if (pooltype == "SUM") {
      SumPool<T> pool;
      SegmentOpsKernel<
          T, IndexT, ArrangeHelper<IndexT>,
          SumPool<T>><<<config.block_per_grid.x, config.thread_per_block.x, 0,
                        ctx.stream()>>>(segment_ids.data<IndexT>(),
                                        input.data<T>(), output->data<T>(), h,
                                        pool);
    } else if (pooltype == "MAX") {
      MaxPool<T> pool;
      SegmentOpsKernel<
          T, IndexT, ArrangeHelper<IndexT>,
          MaxPool<T>><<<config.block_per_grid.x, config.thread_per_block.x, 0,
                        ctx.stream()>>>(segment_ids.data<IndexT>(),
                                        input.data<T>(), output->data<T>(), h,
                                        pool);
    } else if (pooltype == "MIN") {
      MinPool<T> pool;
      SegmentOpsKernel<
          T, IndexT, ArrangeHelper<IndexT>,
          MinPool<T>><<<config.block_per_grid.x, config.thread_per_block.x, 0,
                        ctx.stream()>>>(segment_ids.data<IndexT>(),
                                        input.data<T>(), output->data<T>(), h,
                                        pool);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unsupported segment pooling operation, Only MEAN, SUM, MAX, MIN "
          "available, but got %s.",
          pooltype));
    }
  }
};

template <typename T, typename IndexT>
class SegmentPoolGradFunctor<platform::CUDADeviceContext, T, IndexT> {
 public:
  void operator()(const platform::CUDADeviceContext& context,
                  const framework::Tensor& input,
                  const framework::Tensor& output,
                  const framework::Tensor& out_grad,
                  const framework::Tensor& segments, framework::Tensor* in_grad,
                  const framework::Tensor* summed_ids = nullptr,
                  const std::string pooltype = "SUM") {
    if (pooltype == "MAX" || pooltype == "MIN") {
      SegmentPoolCUDAGradFunctor<T, IndexT>(context, input, segments, output,
                                            out_grad, in_grad, pooltype);
    } else if (pooltype == "MEAN") {
      framework::Tensor mean_grad;
      mean_grad.mutable_data<T>(input.dims(), context.GetPlace());
      framework::TensorCopy(out_grad, context.GetPlace(), context, &mean_grad);
      int len = output.dims()[0];
      int dim = output.numel() / len;
      auto config = platform::GetGpuLaunchConfig1D(context, len);
      SimpleDiv<T><<<config.block_per_grid.x, config.thread_per_block.x, 0,
                     context.stream()>>>(mean_grad.data<T>(),
                                         summed_ids->data<T>(), len, dim);
      GPUGather<T, IndexT>(context, mean_grad, segments, in_grad);
    } else if (pooltype == "SUM") {
      GPUGather<T, IndexT>(context, out_grad, segments, in_grad);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unsupported segment pooling operation, Only MEAN, SUM, MAX, MIN "
          "available, but got %s.",
          pooltype));
    }
  }
};

using CUDA = paddle::platform::CUDADeviceContext;
template class SegmentPoolFunctor<CUDA, float, int>;
template class SegmentPoolFunctor<CUDA, float, int64_t>;
template class SegmentPoolFunctor<CUDA, double, int>;
template class SegmentPoolFunctor<CUDA, double, int64_t>;
template class SegmentPoolGradFunctor<CUDA, float, int>;
template class SegmentPoolGradFunctor<CUDA, float, int64_t>;
template class SegmentPoolGradFunctor<CUDA, double, int>;
template class SegmentPoolGradFunctor<CUDA, double, int64_t>;

}  // namespace operators
}  // namespace paddle