tensor.py 51.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
from six.moves import reduce
Y
Yu Yang 已提交
17
from ..layer_helper import LayerHelper
18
from ..param_attr import ParamAttr
X
xuwei06 已提交
19 20
from ..framework import convert_np_dtype_to_dtype_
from ..framework import Variable
21
from ..initializer import Constant, force_init_on_cpu
22
from ..core import VarDesc
23
from .layer_function_generator import templatedoc
24
from ..data_feeder import convert_dtype
X
xuwei06 已提交
25
import numpy
26 27
import warnings
from ..data_feeder import convert_dtype
Y
Yu Yang 已提交
28 29

__all__ = [
L
li099 已提交
30 31 32
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
33
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
34
    'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye'
Y
Yu Yang 已提交
35 36 37
]


X
xuwei06 已提交
38
def create_tensor(dtype, name=None, persistable=False):
39
    """
W
wangchaochaohu 已提交
40
    Create a variable, which will hold a Tensor with data type dtype.
41 42

    Args:
W
wangchaochaohu 已提交
43 44 45 46
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
47
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
48
            default value is False.
49 50

    Returns:
W
wangchaochaohu 已提交
51
        Variable: The tensor to be created according to dtype.
52 53 54 55

    Examples:
        .. code-block:: python

56
          import paddle.fluid as fluid
57 58
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
Y
Yu Yang 已提交
59
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
60 61
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
62 63


64 65
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
66
                     name=None,
67 68 69 70
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
71
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
72 73 74 75 76
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

77 78 79 80 81 82 83
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
84 85 86
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
87
        default_initializer (Initializer, optional): Initializer for the parameter
88 89

    Returns:
90
        The created parameter.
Y
yuyang18 已提交
91 92

    Examples:
93 94
        .. code-block:: python

95
            import paddle.fluid as fluid
96 97
            import paddle.fluid.layers as layers
            W = layers.create_parameter(shape=[784, 200], dtype='float32')
98
    """
Q
Qiao Longfei 已提交
99
    helper = LayerHelper("create_parameter", **locals())
100
    if attr is None:
X
xuwei06 已提交
101
        attr = ParamAttr(name=name)
102 103 104 105
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


106 107 108 109 110 111 112
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
113
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
114

115 116 117
    Parameters:
        shape (list of int): Shape of the variable
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
118
                      variable will be filled with it.
119 120
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
121
                           Default: False
122
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
123
                         Default: False
124 125
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
126 127

    Returns:
128
        Variable: The created Variable
F
fengjiayi 已提交
129 130 131 132

    Examples:
        .. code-block:: python

133
            import paddle.fluid as fluid
134 135 136
            import paddle.fluid.layers as layers
            var = layers.create_global_var(shape=[2,3], value=1.0, dtype='float32',
                                          persistable=True, force_cpu=True, name='new_var')
137
    """
Q
Qiao Longfei 已提交
138 139
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
140 141 142 143 144
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
145 146 147
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
148

Q
Qiao Longfei 已提交
149 150 151
    return var


152
def cast(x, dtype):
Y
Yu Yang 已提交
153
    """
154 155 156
    This OP takes in the Variable :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
157 158

    Args:
159 160 161 162
        x(Variable): An input N-D Tensor with data type bool, float16,
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
            bool, float15, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
163 164

    Returns:
165
        Variable: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
166 167 168

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
169

170
            import paddle.fluid as fluid
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
            import numpy as np

            place = fluid.core.CPUPlace()

            x_lod = fluid.data(name="x", shape=[2,2], lod_level=0)
            cast_res1 = fluid.layers.cast(x=x_lod, dtype="uint8")
            cast_res2 = fluid.layers.cast(x=x_lod, dtype=np.int32)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())

            x_i_lod = fluid.core.LoDTensor()
            x_i_lod.set(np.array([[1.3,-2.4],[0,4]]).astype("float32"), place)
            x_i_lod.set_recursive_sequence_lengths([[0,2]])
            res1 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res1], return_numpy=False)
            res2 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res2], return_numpy=False)
            print(np.array(res1[0]), np.array(res1[0]).dtype)
            # [[  1 254]
            #  [  0   4]] uint8
            print(np.array(res2[0]), np.array(res2[0]).dtype)
            # [[ 1 -2]
            #  [ 0  4]] int32
Y
Yu Yang 已提交
193 194
    """
    helper = LayerHelper('cast', **locals())
195 196 197 198 199 200 201 202 203 204 205
    if not isinstance(x, Variable):
        raise TypeError(
            "The type of 'x' in cast must be Variable, but received %s" %
            (type(x)))
    if convert_dtype(x.dtype) not in [
            'bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8'
    ]:
        raise TypeError(
            "The data type of 'x' in cast must be one of [bool, float16, float32, float64, int32, int64, uint8], but received %s."
            % (convert_dtype(x.dtype)))

X
Xin Pan 已提交
206
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
207 208 209 210 211 212 213 214 215
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


216
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
217
    """
218 219
    **Concat**

220
    This OP concatenates the input along the axis.
221 222

    Args:
223 224 225 226 227 228 229 230
        input(list): List of input Tensors with data type float32, float64, int32,
            int64.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
231 232

    Returns:
233
        Variable: A Tensor with the same data type as input's.
234 235 236

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
237

238
            import paddle.fluid as fluid
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
            import numpy as np

            in1 = np.array([[1,2,3],
                            [4,5,6]])
            in2 = np.array([[11,12,13],
                            [14,15,16]])
            in3 = np.array([[21,22],
                            [23,24]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
                out1 = fluid.layers.concat(input=[x1,x2,x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1,x2], axis=0)
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
261 262
    """
    helper = LayerHelper('concat', **locals())
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
    if not isinstance(input, list):
        warnings.warn(
            "The type of input in concat should be list, but received %s." %
            (type(input)))
        input = [input]
    for x in input:
        if not isinstance(x, Variable):
            raise TypeError(
                "The type of x in 'input' in concat must be Variable, but received %s."
                % (type(x)))
        if convert_dtype(x.dtype) in ['float16']:
            warnings.warn(
                "The data type of x in 'input' in concat only support float16 on GPU now."
            )
        if convert_dtype(x.dtype) not in [
                'float16', 'float32', 'float64', 'int32', 'int64'
        ]:
            raise TypeError(
                "The data type of x in 'input' in concat must be float16(only support on GPU), float32, float64, int32, int64, but received %s."
                % (convert_dtype(x.dtype)))
X
Xin Pan 已提交
283
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
Y
Yu Yang 已提交
284 285 286 287 288 289 290 291
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


292
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
L
li099 已提交
293
    """
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
344 345

    Args:
346 347 348 349 350 351 352
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
353 354

    Returns:
355 356 357
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
358 359 360 361

    Examples:
        .. code-block:: python

362
            import paddle.fluid as fluid
363
            import numpy as np
364 365 366 367 368 369 370
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
371
    """
L
li099 已提交
372
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
373 374 375
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
376
        type='tensor_array_to_tensor',
L
li099 已提交
377 378 379
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
380 381
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
382 383 384
    return out, out_index


385
def sums(input, out=None):
F
fengjiayi 已提交
386
    """
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
408 409

    Args:
410 411 412 413
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
414 415

    Returns:
416 417
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
418 419

    Examples:
F
fengjiayi 已提交
420
        .. code-block:: python
K
kavyasrinet 已提交
421

422 423 424 425 426 427 428 429 430
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
431

432 433
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
434 435 436
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
437 438
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
T
tensor-tang 已提交
439 440 441 442 443
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
444 445 446
    return out


F
fengjiayi 已提交
447
def assign(input, output=None):
448
    """
449
    The OP copies the :attr:`input` to the :attr:`output`.
450

451 452 453 454 455
    Parameters:
        input (Variable|numpy.ndarray): A tensor or numpy ndarray, its data type supports
            float32, float64, int32 and int64.
        output (Variable, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.
456 457

    Returns:
458
        Variable: A tensor with the same shape, data type and value as :attr:`input`.
459 460 461

    Examples:
        .. code-block:: python
462

463
          import paddle.fluid as fluid
464 465 466 467 468 469
          import numpy as np
          data = fluid.layers.fill_constant(shape=[3, 2], value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result1 = fluid.layers.create_tensor(dtype='float64')
          fluid.layers.assign(data, result1) # result1 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result2 = fluid.layers.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = fluid.layers.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
470
    """
Y
Yu Yang 已提交
471
    helper = LayerHelper('assign', **locals())
X
xuwei06 已提交
472
    if isinstance(input, Variable):
473
        if convert_dtype(input.dtype) not in [
474
                'float32', 'float64', 'int32', 'int64', 'bool'
475 476 477
        ]:
            raise TypeError(
                "When the type of 'input' in assign is Variable, the data "
478 479
                "type of 'input' must be float32, float64, int32, int64 or "
                "bool, but received %s." % convert_dtype(input.dtype))
480 481 482
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
483
        helper.append_op(
R
robot 已提交
484
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
485 486
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
487
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
488
            value_name = "fp32_values"
489
            values = [float(v) for v in input.flat]
490
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
491
            value_name = "int32_values"
492
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
493
        else:
494 495 496 497
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
                "the data type of 'input' must be float32 or int32, but "
                "received %s." % convert_dtype(dtype))
498 499 500
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
501 502 503
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
504 505 506 507 508 509
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
510
                value_name: values
X
xuwei06 已提交
511 512
            })
    else:
513 514
        raise TypeError("The type of 'input' in assign must be Variable or "
                        "numpy.ndarray, but received %s" % type(input))
X
xuwei06 已提交
515

Y
Yu Yang 已提交
516 517 518
    return output


Q
QI JUN 已提交
519
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
520
    """
W
wangchaochaohu 已提交
521
    This OP creates a Tensor with specified `shape` and `dtype`, and
522
    initializes it with a constant specifed by `value`.
K
kavyasrinet 已提交
523

W
wangchaochaohu 已提交
524
    The attribute `stop_gradient` of the created Tensor is setted to True.
525 526

    Args:
W
wangchaochaohu 已提交
527 528 529 530 531 532 533 534
        shape(tuple|list): Shape of the Tensor to be created.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor which can
            be float16, float32, float64, int32, int64.
        value(float): The constant value used to initialize the Tensor to be created.
        force_cpu(True): data should be on CPU if it's true, defalut value is False.
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
535 536

    Returns:
W
wangchaochaohu 已提交
537 538 539 540 541
        Variable: Tensor which is created according to shape and dtype.

    Raise:
        TypeError: The dtype must be one of bool, float16, float32, float64, int32 and int64
        and the data type of out Tensor must be the same as the dtype. 
542 543 544 545

    Examples:
        .. code-block:: python

546
          import paddle.fluid as fluid
W
wangchaochaohu 已提交
547 548 549
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') #data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1) 
          #data1=[[5], [5]] data2=[[5], [5]]
Y
Yu Yang 已提交
550 551
    """
    helper = LayerHelper("fill_constant", **locals())
552 553 554 555 556 557 558
    if convert_dtype(dtype) not in [
            'bool', 'float16', 'float32', 'float64', 'int32', 'int64'
    ]:
        raise TypeError(
            "The create data type in fill_constant must be one of 'bool', float16, float32,"
            "float64, int32 or int64, but received %s." % convert_dtype(
                (dtype)))
L
liym27 已提交
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608

    if not isinstance(shape, (list, tuple, Variable)):
        raise TypeError(
            "The type of 'shape' in fill_constant must be Variable, list or tuple, but "
            "received %s." % (type(shape)))

    inputs = {}
    attrs = {
        'value': float(value),
        'force_cpu': force_cpu or force_init_on_cpu()
    }

    def _contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def _get_attr_shape(list_shape):
        attr_shape = []
        for idx, dim in enumerate(list_shape):
            if isinstance(dim, Variable):
                attr_shape.append(-1)
            else:
                attr_shape.append(dim)
        return attr_shape

    def _get_shape_tensor(list_shape):
        new_shape_tensor = []
        for dim in list_shape:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_shape_tensor.append(dim)
            else:
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
        return new_shape_tensor

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs["ShapeTensor"] = shape
    elif isinstance(shape, (list, tuple)):
        assert len(shape) > 0, (
            "The size of 'shape' in fill_constant can't be zero, "
            "but received %s." % len(shape))
        attrs["shape"] = _get_attr_shape(shape)
        if _contain_var(shape):
            inputs['ShapeTensorList'] = _get_shape_tensor(shape)

Y
Yu Yang 已提交
609
    if out is None:
X
Xin Pan 已提交
610
        out = helper.create_variable_for_type_inference(dtype=dtype)
611 612 613 614 615 616
    else:
        if not (convert_dtype(dtype) == convert_dtype(out.dtype)):
            raise TypeError(
                "The create data type in op must be same with out type"
                "but received %s and out dtype %s." % (convert_dtype(
                    (dtype), convert_dtype(out.dtype))))
L
liym27 已提交
617
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
618 619
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
620
        inputs=inputs,
Y
Yu Yang 已提交
621
        outputs={'Out': [out]},
L
liym27 已提交
622
        attrs=attrs,
M
minqiyang 已提交
623
        stop_gradient=True)
Y
Yu Yang 已提交
624 625 626 627
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
628
@templatedoc()
Y
Yu Yang 已提交
629 630 631 632 633
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
634 635
                                  output_dim_idx=0,
                                  force_cpu=False):
636
    """
W
wangchaochaohu 已提交
637 638 639 640 641
    This OP creates a Tesnor accroding the shape and dtype, and initializes the
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
642 643

    Args:
W
wangchaochaohu 已提交
644 645 646 647 648 649 650 651 652 653 654
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
655
        force_cpu(bool): data should be on CPU if it's true, defalut value is False.
Y
yuyang18 已提交
656 657

    Returns:
W
wangchaochaohu 已提交
658
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
659 660 661 662 663

    Examples:

        .. code-block:: python

664
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
665
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
666
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
667
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
668

669
    """
Y
Yu Yang 已提交
670
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
671
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
672 673 674 675 676 677 678 679 680
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
681 682
            'output_dim_idx': output_dim_idx,
            'force_cpu': force_cpu or force_init_on_cpu()
Y
Yu Yang 已提交
683 684 685 686 687
        })
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
688 689 690 691
def argmin(x, axis=0):
    """
    **argmin**

692 693
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
694 695

    Args:
696 697 698 699 700
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
701

S
sneaxiy 已提交
702
    Returns:
703
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
704

S
sneaxiy 已提交
705 706
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
707

708
            import paddle.fluid as fluid
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
736 737
    """
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
738
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
739 740 741 742 743 744 745 746 747 748 749 750
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


def argmax(x, axis=0):
    """
    **argmax**

751 752
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
753 754

    Args:
755 756 757 758 759
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
760

S
sneaxiy 已提交
761
    Returns:
762
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
763

S
sneaxiy 已提交
764 765
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
766

767
            import paddle.fluid as fluid
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
795 796
    """
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
797
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
798 799 800 801 802 803 804 805
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


806
def argsort(input, axis=-1, name=None):
Y
Yibing Liu 已提交
807
    """
808 809 810
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
811 812

    Args:
813 814 815 816 817 818 819 820
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
821 822

    Returns:
823 824 825
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
826 827 828 829

    Examples:
        .. code-block:: python

830
            import paddle.fluid as fluid
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
872 873
    """
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
874 875 876 877
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
878 879 880 881
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
882 883
                 'Indices': ids},
        attrs={'axis': axis})
Y
Yibing Liu 已提交
884 885 886
    return out, ids


Y
Yang Yu 已提交
887
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
888
    """
889 890
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
891

892 893 894 895 896 897 898
    Parameters:
        shape (tuple|list): Shape of output tensor.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
            If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
            Default: False.
899 900

    Returns:
901
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
902 903 904 905

    Examples:
        .. code-block:: python

906
          import paddle.fluid as fluid
907
          data = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
Y
Yu Yang 已提交
908
    """
C
chengduozh 已提交
909 910 911 912
    assert isinstance(shape, list) or isinstance(
        shape, tuple), "The shape's type should be list or tuple."
    assert reduce(lambda x, y: x * y,
                  shape) > 0, "The shape is invalid: %s." % (str(shape))
Y
Yu Yang 已提交
913 914 915
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
916
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
917
    """
918 919
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
920

921 922 923 924 925 926 927
    Parameters:
        shape (tuple|list): Shape of output tensor.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
            If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
            Default: False.
928 929

    Returns:
930
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
931 932 933 934

    Examples:
        .. code-block:: python

935
          import paddle.fluid as fluid
936
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
Y
Yu Yang 已提交
937
    """
938 939 940 941 942 943 944
    if convert_dtype(dtype) not in [
            'bool', 'float16', 'float32', 'float64', 'int32', 'int64'
    ]:
        raise TypeError(
            "The create data type in zeros must be one of bool, float16, float32,"
            " float64, int32 or int64, but received %s." % convert_dtype(
                (dtype)))
Y
Yu Yang 已提交
945
    return fill_constant(value=0.0, **locals())
946 947


F
fengjiayi 已提交
948 949
def reverse(x, axis):
    """
950
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
951

952 953 954 955 956
    Parameters:
        x (Variable): A tensor to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
            will be apply on each axis in the tuple or list.
F
fengjiayi 已提交
957 958

    Returns:
959
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
960 961 962 963

    Examples:
        .. code-block:: python

964
          import paddle.fluid as fluid
965 966 967 968
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
F
fengjiayi 已提交
969 970 971 972
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
973
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
974 975
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
976
        inputs={'X': x},
F
fengjiayi 已提交
977 978 979 980 981
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


982 983 984 985 986 987 988
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
989 990 991
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1007 1008
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1009
        file_path(str): The file path where variables will be saved.
1010
        overwrite(bool): Whether or not cover the given file when it has already
1011 1012
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1013 1014 1015 1016 1017 1018 1019 1020

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1021
            import paddle.fluid as fluid
1022 1023 1024 1025 1026 1027 1028
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
    Loads a list of vairables from a single file.

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1053 1054 1055 1056 1057 1058 1059


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
1060
       x (Variable): The Tensor/LoDTensor to be checked.
1061 1062

    Returns:
1063
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1064 1065 1066 1067 1068 1069 1070 1071
    
    Examples:
        .. code-block:: python
          
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_inf(data)

1072 1073
    """
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1074
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1075 1076 1077 1078 1079 1080 1081 1082 1083
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
1084
       x (Variable): The Tensor/LoDTensor to be checked.
1085 1086

    Returns:
1087
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1088 1089 1090 1091 1092 1093 1094 1095
    
    Examples:
        .. code-block:: python
    
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_nan(data)

1096 1097
    """
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1098
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1099 1100 1101 1102 1103 1104
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
1105
    Test if any of x contains an infinity / nan number. If all the elements are finite,
1106 1107
    returns true, else false.

1108 1109 1110
    Note: The input to this operator Tensor / LoDTensor data type must be one of
    int32 / float / double.

1111
    Args:
1112
       x(Variable): The Tensor / LoDTensor to be checked.
1113 1114 1115

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
1116 1117 1118 1119 1120

    Examples:

        .. code-block:: python

1121
            import paddle.fluid as fluid
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
            import numpy

            # Graph Organizing
            var = fluid.data(name="data", shape=(4, 6), dtype="float32")
            output = fluid.layers.isfinite(var)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            img = numpy.ones((4, 6)).astype(numpy.float32)
            res, = exe.run(fluid.default_main_program(), feed={'data':img}, fetch_list=[output])
            print(res)  # Output Value: [ True]
1135 1136
    """
    helper = LayerHelper("isfinite", **locals())
X
Xin Pan 已提交
1137
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1138 1139
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1140 1141 1142 1143 1144 1145 1146 1147 1148


def range(start, end, step, dtype):
    """
    Return evenly spaced values within a given interval.

    Values are generated within the half-open interval [start, stop) (in other words,
    the interval including start but excluding stop).

L
Liufang Sang 已提交
1149 1150 1151 1152
    Parameters:
        start(float32 | float64 | int32 | int64 | Variable): Start of interval. The interval includes this value.
            when start is Variable, it is a 1-D Tensor with shape [1].
        end(float32 | float64 | int32 | int64 | Variable): End of interval. The interval does not include this
W
whs 已提交
1153
                                 value, except in some cases where step is not an integer
L
Liufang Sang 已提交
1154 1155 1156
                                 and floating point round-off affects the length of out. When end is Variable,
                                 it is a 1-D Tensor with shape [1].
        step(float32 | float64 | int32 | int64 | Variable): Spacing between values. For any output out, this is the
W
whs 已提交
1157
                                  distance between two adjacent values, out[i+1] - out[i].
L
Liufang Sang 已提交
1158
        dtype(str): the data type of the output tensor, can be float32, float64, int32, int64.
W
whs 已提交
1159

L
Liufang Sang 已提交
1160 1161 1162
    Returns: a 1-D Tensor which is evenly spaced values within a given interval. Its data type is set by dtype.
    
    Return type: Variable
W
whs 已提交
1163 1164 1165 1166 1167

    examples:

        .. code-block:: python

1168
             import paddle.fluid as fluid
W
whs 已提交
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
             data = fluid.layers.range(0, 10, 2, 'int32')

    """
    helper = LayerHelper("range", **locals())

    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(end, Variable):
        end = fill_constant([1], dtype, end)
    if not isinstance(step, Variable):
        step = fill_constant([1], dtype, step)

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
        outputs={'Out': [out]})
1189
    out.stop_gradient = True
W
whs 已提交
1190
    return out
Z
zhoukunsheng 已提交
1191 1192


Z
zhoukunsheng 已提交
1193 1194
def linspace(start, stop, num, dtype):
    """
1195
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1196 1197

    Args:
1198 1199 1200 1201 1202 1203 1204
        start(float|Variable): The input :attr:`start` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        stop(float|Variable): The input :attr:`stop` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        num(int|Variable): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a tensor of shape [1] with type int32.
        dtype(string): The data type of output tensor, it could be 'float32' and 'float64'.
Z
zhoukunsheng 已提交
1205 1206

    Returns:
1207 1208 1209
        Variable, the output data type will be float32, float64.: The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1210

Z
zhoukunsheng 已提交
1211
    Examples:
Z
zhoukunsheng 已提交
1212 1213
        .. code-block:: python

1214
             import paddle.fluid as fluid
Z
zhoukunsheng 已提交
1215 1216
             data = fluid.layers.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = fluid.layers.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236

    """
    helper = LayerHelper("linspace", **locals())

    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        num = fill_constant([1], 'int32', num)

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='linspace',
        inputs={'Start': start,
                'Stop': stop,
                'Num': num},
        outputs={'Out': [out]})
    return out
1237 1238


Z
zhoukunsheng 已提交
1239 1240
def zeros_like(x, out=None):
    """
1241
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1242 1243 1244
    with `x`.

    Args:
1245 1246 1247 1248
        x(Variable): The input tensor which specifies shape and dtype, the input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the variable as output, the data type and shape of \
            this variable will be same as input :attr:`x`. If is a tensor, the data type and shape need to be same as input :attr:`x`. 
            The defalut value is :attr:`None` .
Z
zhoukunsheng 已提交
1249 1250

    Returns:
1251 1252
        Variable: The N-D tensor, the element in tensor is related to input data type, if the input data type is bool, \
            the output value is False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1253 1254 1255 1256

    Examples:
        .. code-block:: python

1257
          import paddle.fluid as fluid
1258
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1259 1260
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1261 1262 1263 1264 1265 1266 1267 1268 1269
    """

    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1270 1271 1272 1273


def diag(diagonal):
    """
1274
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1275 1276

    Args:
1277 1278
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1279 1280

    Returns:
1281 1282
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1283 1284 1285 1286 1287 1288 1289

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1290 1291 1292

          import paddle.fluid as fluid
          import numpy as np
1293 1294 1295
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310

    """

    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1311 1312


1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
def eye(num_rows, num_columns=None, batch_shape=None, dtype='float32'):
    """
    **eye**

    This function constructs an identity tensor, or a batch of tensor.

    Args:
        num_rows(int): the number of rows in each batch tensor.
        num_columns(int): the number of columns in each batch tensor.
                          If None, default: num_rows.
        batch_shape(list(int)): If provided, the returned tensor will have a leading
                                batch size of this shape.
1325 1326
        dtype(string): The data type of the returned tensor.
                       It should be int32, int64, float16, float32, float64.
1327 1328

    Returns:
1329
        Variable: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1330 1331 1332 1333 1334

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1335 1336
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1337
          #  [0, 1, 0]
1338 1339
          #  [0, 0, 1]]

1340
          data = fluid.layers.eye(2, 3, dtype='int32')
1341
          # [[1, 0, 0]
1342
          #  [0, 1, 0]]
1343 1344

          data = fluid.layers.eye(2, batch_shape=[3])
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

    helper = LayerHelper("eye", **locals())
    if not isinstance(num_rows, int) or num_rows < 0:
        raise TypeError("num_rows should be a non-negative int")
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
    out = helper.create_variable_for_type_inference(dtype=dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='eye',
        inputs={},
        outputs={'Out': [out]},
        attrs={
            'num_rows': num_rows,
            'num_columns': num_columns,
            'dtype': c_dtype
        },
        stop_gradient=True)
    out.stop_gradient = True

    if batch_shape is not None:
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
        from .nn import stack
        for batch_val in reversed(batch_shape):
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
            else:
                stack_vars = [out for _ in numpy.arange(batch_val)]
                out = stack(stack_vars, axis=0)
    return out


Z
zhoukunsheng 已提交
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1397
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out