engine.h 26.3 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <NvInfer.h>
18
#include <map>
Y
Yan Chunwei 已提交
19
#include <memory>
20
#include <mutex>  // NOLINT
21
#include <string>
Y
Yan Chunwei 已提交
22
#include <unordered_map>
23
#include <unordered_set>
24
#include <utility>
25
#include <vector>
W
wanghuancoder 已提交
26

N
nhzlx 已提交
27
#include "paddle/fluid/framework/tensor.h"
28
#include "paddle/fluid/framework/tensor_util.h"
Z
Zhaolong Xing 已提交
29
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
Y
Yan Chunwei 已提交
30 31
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
32
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
N
nhzlx 已提交
33
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
34
#include "paddle/fluid/inference/utils/singleton.h"
35
#include "paddle/fluid/platform/enforce.h"
36
#include "paddle/utils/any.h"
Y
Yan Chunwei 已提交
37 38 39 40 41

namespace paddle {
namespace inference {
namespace tensorrt {

W
wanghuancoder 已提交
42 43 44 45
namespace plugin {
class PluginTensorRT;
}  // namespace plugin

46 47 48 49 50 51 52 53 54 55 56
using FluidDT = framework::proto::VarType_Type;
using TRT_DT = nvinfer1::DataType;

namespace {  // NOLINT

TRT_DT FluidDataType2TRT(FluidDT type) {
  switch (type) {
    case FluidDT::VarType_Type_FP32:
      return TRT_DT::kFLOAT;
    case FluidDT::VarType_Type_INT32:
      return TRT_DT::kINT32;
W
wenbin 已提交
57 58
    case FluidDT::VarType_Type_FP16:
      return TRT_DT::kHALF;
59 60 61 62 63 64 65 66 67 68
    default:
      return TRT_DT::kINT32;
  }
  PADDLE_THROW(platform::errors::InvalidArgument(
      "unknown fluid datatype in TRT op converter"));
  return TRT_DT::kINT32;
}

// The T can be int32 or int64 type.
template <typename T>
69 70
nvinfer1::Dims Vec2TRT_Dims(const std::vector<T>& shape,
                            std::string input,
71
                            bool with_dynamic_shape = false) {
72 73
  PADDLE_ENFORCE_GT(shape.size(),
                    0UL,
74
                    platform::errors::InvalidArgument(
75
                        "TensorRT's tensor input requires at least 1 "
76
                        "dimensions, but input %s has %d dims.",
77 78
                        input,
                        shape.size()));
W
wenbin 已提交
79

80 81 82 83 84 85 86 87 88 89 90 91 92
  auto ShapeStr = [](const std::vector<T>& shape) {
    std::ostringstream os;
    os << "[";
    for (size_t i = 0; i < shape.size(); ++i) {
      if (i == shape.size() - 1) {
        os << shape[i];
      } else {
        os << shape[i] << ",";
      }
    }
    os << "]";
    return os.str();
  };
93 94
  if (!with_dynamic_shape) {
    if (shape.size() == 4UL) {
95 96 97 98
      if (shape[2] == -1 || shape[3] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
99 100
            input,
            ShapeStr(shape)));
101
      }
102
      return nvinfer1::Dims3(shape[1], shape[2], shape[3]);
W
wenbin 已提交
103 104 105 106 107
    } else if (shape.size() == 5UL) {
      if (shape[2] == -1 || shape[3] == -1 || shape[4] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
108 109
            input,
            ShapeStr(shape)));
W
wenbin 已提交
110 111
      }
      return nvinfer1::Dims4(shape[1], shape[2], shape[3], shape[4]);
112
    } else if (shape.size() == 3UL) {
113 114 115 116
      if (shape[1] == -1 || shape[2] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
117 118
            input,
            ShapeStr(shape)));
119
      }
120
      return nvinfer1::Dims2(shape[1], shape[2]);
121 122 123 124 125
    } else if (shape.size() == 2UL) {
      if (shape[1] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
126 127
            input,
            ShapeStr(shape)));
128 129 130 131 132
      }
      nvinfer1::Dims dims;
      dims.nbDims = 1;
      dims.d[0] = shape[1];
      return dims;
133
    }
134
    // static shape doesn't support 1D op so far.
135 136
    PADDLE_ENFORCE_NE(shape.size(),
                      1UL,
137 138 139
                      platform::errors::InvalidArgument(
                          "The input [%s] shape of trt subgraph is %s."
                          "it's not supported by trt so far",
140 141
                          input,
                          ShapeStr(shape)));
142 143 144 145 146 147 148

    nvinfer1::Dims dims;
    dims.nbDims = shape.size() - 1;
    for (size_t i = 1; i < shape.size(); i++) {
      dims.d[i - 1] = shape[i];
    }
    return dims;
149 150
  } else {
    if (shape.size() == 4UL) {
151
      return nvinfer1::Dims4(shape[0], shape[1], shape[2], shape[3]);
152 153 154
    } else if (shape.size() == 3UL) {
      return nvinfer1::Dims3(shape[0], shape[1], shape[2]);
    }
155 156 157 158 159 160
    nvinfer1::Dims dims;
    dims.nbDims = shape.size();
    for (size_t i = 0; i < shape.size(); i++) {
      dims.d[i] = shape[i];
    }
    return dims;
161 162
  }
}
163
}  // namespace
164

N
nhzlx 已提交
165
class TRTInt8Calibrator;
W
wanghuancoder 已提交
166

Y
Yan Chunwei 已提交
167 168 169 170
/*
 * TensorRT Engine.
 *
 * There are two alternative ways to use it, one is  to build from a paddle
171
 * protobuf model, another way is to manually construct the network.
Y
Yan Chunwei 已提交
172
 */
173 174
class TensorRTEngine {
  using DescType = ::paddle::framework::proto::BlockDesc;
175
  using ShapeMapType = std::map<std::string, std::vector<int>>;
176

Y
Yan Chunwei 已提交
177 178 179 180
 public:
  // Weight is model parameter.
  class Weight {
   public:
181
    Weight() = default;
182
    Weight(nvinfer1::DataType dtype, void* value, size_t num_elem) {
Y
Yan Chunwei 已提交
183 184 185 186
      w_.type = dtype;
      w_.values = value;
      w_.count = num_elem;
    }
187
    const nvinfer1::Weights& get() { return w_; }
Y
Yan Chunwei 已提交
188

189 190
    std::vector<int64_t> dims;

Y
Yan Chunwei 已提交
191 192 193 194
   private:
    nvinfer1::Weights w_;
  };

Z
Zhaolong Xing 已提交
195
  TensorRTEngine(
196 197
      int max_batch,
      int max_workspace,
Z
Zhaolong Xing 已提交
198
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
199 200
      TRTInt8Calibrator* calibrator = nullptr,
      int device_id = 0,
201 202 203
      const ShapeMapType min_input_shape = {},
      const ShapeMapType max_input_shape = {},
      const ShapeMapType optim_input_shape = {},
204
      bool disable_trt_plugin_fp16 = false,
Z
Zhaolong Xing 已提交
205
      nvinfer1::ILogger& logger = NaiveLogger::Global())
Y
Yan Chunwei 已提交
206 207
      : max_batch_(max_batch),
        max_workspace_(max_workspace),
Z
Zhaolong Xing 已提交
208
        precision_(precision),
N
nhzlx 已提交
209
        calibrator_(calibrator),
N
nhzlx 已提交
210
        device_id_(device_id),
211 212 213
        min_input_shape_(min_input_shape),
        max_input_shape_(max_input_shape),
        optim_input_shape_(optim_input_shape),
214
        disable_trt_plugin_fp16_(disable_trt_plugin_fp16),
215 216 217 218
        logger_(logger) {
    if (min_input_shape_.size() != 0 && max_input_shape_.size() != 0 &&
        optim_input_shape_.size() != 0) {
      PADDLE_ENFORCE_EQ(
219 220
          min_input_shape_.size(),
          max_input_shape_.size(),
221 222 223
          platform::errors::InvalidArgument(
              "The min_input_shape_'s size(%d) should be equal to the "
              "size(%d) of max_input_shape_",
224 225
              min_input_shape_.size(),
              max_input_shape_.size()));
226
      PADDLE_ENFORCE_EQ(
227 228
          min_input_shape_.size(),
          optim_input_shape_.size(),
229 230 231
          platform::errors::InvalidArgument(
              "The min_input_shape_'s size(%d) should be equal to the "
              "size(%d) of optim_input_shape_",
232 233
              min_input_shape_.size(),
              optim_input_shape_.size()));
234 235 236 237 238 239 240
#if IS_TRT_VERSION_GE(6000)
      with_dynamic_shape_ = true;
#else
      LOG(WARNING) << "Using dynamic shape of TRT need ensure that the TRT "
                      "version should be at least 6.";
#endif
    }
241
    dy::initLibNvInferPlugins(&logger, "");
242
  }
Y
Yan Chunwei 已提交
243

244 245 246 247 248 249 250 251 252
  ~TensorRTEngine() {
    for (auto& attr : attrs_) {
      if (attr_dels_.find(attr.first) != attr_dels_.end()) {
        attr_dels_[attr.first]();
      }
    }
    attrs_.clear();
    attr_dels_.clear();
  }
Y
Yan Chunwei 已提交
253

254
  // Add an input and set its name, data type and dimension.
Y
Yan Chunwei 已提交
255 256 257 258 259
  nvinfer1::ITensor* DeclareInput(const std::string& name,
                                  nvinfer1::DataType dtype,
                                  const nvinfer1::Dims& dim);
  // Set the offset-th output from a layer as the network's output, and set its
  // name.
260 261
  void DeclareOutput(const nvinfer1::ILayer* layer,
                     int offset,
Y
Yan Chunwei 已提交
262
                     const std::string& name);
L
Luo Tao 已提交
263 264
  // Set the itensor_map_[name] as the network's output, and set its name.
  void DeclareOutput(const std::string& name);
265
  void ClearTensorMap() { itensor_map_.clear(); }
Y
Yan Chunwei 已提交
266

L
Luo Tao 已提交
267 268 269
  void SetITensor(const std::string& name, nvinfer1::ITensor* tensor);
  // Get an ITensor called name.
  nvinfer1::ITensor* GetITensor(const std::string& name);
Y
Yan Chunwei 已提交
270 271

  nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
272 273 274 275 276 277 278 279
  nvinfer1::IExecutionContext* context() {
    std::unique_lock<std::mutex> lock(mutex_);
    const std::thread::id tid = std::this_thread::get_id();
    if (infer_context_.find(tid) == infer_context_.end()) {
      PADDLE_ENFORCE_NOT_NULL(
          infer_engine_,
          platform::errors::InvalidArgument(
              "You should build engine first and then set the context."));
W
wenbin 已提交
280 281 282
      // We may see trt warning: Profile 0 has been chosen by another
      // IExecutionContext...
      // It's ok. We will set it later.
283
      infer_context_[tid].reset(infer_engine_->createExecutionContext());
W
wenbin 已提交
284 285 286 287 288 289 290 291
      if (with_dynamic_shape_) {
        // need new profile if it's not the first
        if (cur_profile_num_ > 0) {
          infer_context_[tid]->setOptimizationProfile(cur_profile_num_);
        }
        profile_index_[tid] = cur_profile_num_;
        ++cur_profile_num_;
      }
292 293 294
    }
    return infer_context_[tid].get();
  }
W
wenbin 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311

  int GetProfileIndex() {
    if (max_profile_num_ > 1) {
      std::unique_lock<std::mutex> lock(mutex_);
      const std::thread::id tid = std::this_thread::get_id();
      return profile_index_[tid];
    } else {
      return 0;
    }
  }

  int GetBindingsOffset() {
    return (binding_num_ / max_profile_num_) * GetProfileIndex();
  }

  int GetNbBindings() { return binding_num_; }

312 313 314 315 316 317 318 319 320 321
  void ResetContext() {
    std::unique_lock<std::mutex> lock(mutex_);
    const std::thread::id tid = std::this_thread::get_id();
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "You should build engine first and then set the context."));
    infer_context_[tid].reset(nullptr);
    infer_context_.erase(tid);
  }
N
nhzlx 已提交
322 323

  nvinfer1::IHostMemory* Serialize() {
324 325 326 327
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "The TensorRT engine must be built first before serialization"));
Z
zlsh80826 已提交
328
#if IS_TRT_VERSION_LT(8000)
N
nhzlx 已提交
329
    ihost_memory_.reset(infer_engine_->serialize());
Z
zlsh80826 已提交
330 331 332 333 334 335
#else
    PADDLE_ENFORCE_NOT_NULL(
        ihost_memory_,
        platform::errors::InvalidArgument(
            "TensorRT >= 8.0 requires that buildSerializedNetwork is called"));
#endif
N
nhzlx 已提交
336 337 338 339
    return ihost_memory_.get();
  }

  void Deserialize(const std::string& engine_serialized_data) {
N
nhzlx 已提交
340
    freshDeviceId();
N
nhzlx 已提交
341
    infer_ptr<nvinfer1::IRuntime> runtime(createInferRuntime(&logger_));
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364

    if (use_dla_) {
      if (precision_ != AnalysisConfig::Precision::kInt8 &&
          precision_ != AnalysisConfig::Precision::kHalf) {
        LOG(WARNING) << "TensorRT DLA must be used with int8 or fp16, but you "
                        "set float32, so DLA is not used.";
      } else if (runtime->getNbDLACores() == 0) {
        LOG(WARNING)
            << "TensorRT DLA is set by config, but your device does not have "
               "DLA, so DLA is not used.";
      } else {
        if (dla_core_ < 0 || dla_core_ >= runtime->getNbDLACores()) {
          dla_core_ = 0;
          LOG(WARNING) << "Invalid DLACore, must be 0 < DLACore < "
                       << runtime->getNbDLACores() << ", but got " << dla_core_
                       << ", so use use 0 as default.";
        }
        runtime->setDLACore(dla_core_);
        LOG(INFO) << "TensorRT DLA enabled in Deserialize(), DLACore "
                  << dla_core_;
      }
    }

365 366
    infer_engine_.reset(runtime->deserializeCudaEngine(
        engine_serialized_data.c_str(), engine_serialized_data.size()));
367

368 369 370 371 372 373 374 375
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::Fatal(
            "Building TRT cuda engine failed when deserializing engine info. "
            "Please check:\n1. Your TRT serialization is generated and loaded "
            "on the same GPU architecture;\n2. The Paddle Inference version of "
            "generating serialization file and doing inference are "
            "consistent."));
376

W
wenbin 已提交
377
    binding_num_ = infer_engine_->getNbBindings();
378
    GetEngineInfo();
N
nhzlx 已提交
379 380
  }

381 382
  void SetRuntimeBatch(size_t batch_size);
  int GetRuntimeBatch();
383 384 385 386 387 388 389

  bool WithFp16() {
    bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
    bool support_fp16 = infer_builder_->platformHasFastFp16();
    return enable_fp16 && support_fp16;
  }

N
nhzlx 已提交
390
  int GetDeviceId() { return device_id_; }
391

392
  nvinfer1::IPluginV2Layer* AddPlugin(nvinfer1::ITensor* const* inputs,
393 394
                                      int num_inputs,
                                      plugin::PluginTensorRT*);
395 396 397 398 399

  nvinfer1::IPluginV2Layer* AddPluginV2Ext(nvinfer1::ITensor* const* inputs,
                                           int num_inputs,
                                           plugin::PluginTensorRTV2Ext* plugin);

400 401 402 403
  nvinfer1::IPluginV2Layer* AddPluginV2IOExt(nvinfer1::ITensor* const* inputs,
                                             int num_inputs,
                                             nvinfer1::IPluginV2IOExt* plugin);

404 405 406 407 408
  void SetTensorDynamicRange(nvinfer1::ITensor* tensor, float range) {
    quant_dynamic_range_[tensor] = range;
  }

  float* GetWeightCPUData(const std::string& name,
409
                          framework::Tensor* weight_tensor);
N
nhzlx 已提交
410 411 412 413 414 415 416 417

  // A pointer to CPU memory is needed of the TRT weight.
  // Before TRT runs, fluid loads weight into GPU storage.
  // so we need to copy the weights from GPU to CPU in our op converter.
  // We use a map to store these weights for the weight memory is not released
  // in advance, which affecting the construction of TRT Op.
  std::unordered_map<std::string /*name*/, std::unique_ptr<framework::Tensor>>
      weight_map;
Y
Yan Chunwei 已提交
418

419 420 421 422 423 424
  // When setting weight_map, a self-increasing suffix is needed for the names
  // so as to avoid repeatedly setting weights with the same name.
  void SetWeights(std::string w_name,
                  std::unique_ptr<framework::Tensor> w_tensor) {
    static int suffix_counter = 0;
    std::string suffix = std::to_string(suffix_counter);
P
Pei Yang 已提交
425 426
    std::string splitter = "__";
    weight_map[w_name + splitter + suffix] = std::move(w_tensor);
427 428 429
    suffix_counter += 1;
  }

430
  void SetUseOSS(bool use_oss) { use_oss_ = use_oss; }
431 432
  void SetUseDLA(bool use_dla) { use_dla_ = use_dla; }
  void SetDLACore(int dla_core) { dla_core_ = dla_core; }
433
  void SetWithErnie(bool with_ernie) { with_ernie_ = with_ernie; }
434 435 436
  void SetWithInterleaved(bool with_interleaved) {
    with_interleaved_ = with_interleaved;
  }
437

438 439 440 441 442 443
  void ClearWeights() {
    for (auto& weight_pair : weight_map) {
      weight_pair.second.reset(nullptr);
    }
  }

444 445 446 447 448 449 450
  // NOTE: The func bellow was modified to adapt the dynamic shape.
  // Initialize the inference network, so that TensorRT layers can add to this
  // network.
  void InitNetwork();
  // After finishing adding ops, freeze this network and creates the execution
  // environment.
  void FreezeNetwork();
451 452
  void Execute(int batch_size,
               std::vector<void*>* buffers,
453 454
               cudaStream_t stream = nullptr);

455
  nvinfer1::INetworkDefinition* network() { return infer_network_.get(); }
456 457 458 459

  ShapeMapType min_input_shape() { return min_input_shape_; }
  ShapeMapType max_input_shape() { return max_input_shape_; }
  ShapeMapType optim_input_shape() { return optim_input_shape_; }
460 461 462 463 464 465 466 467 468

  bool AdjustDynamicShapeRange(const ShapeMapType& runtime_input_shape,
                               std::vector<std::string>* changed) {
    bool ret = false;
    changed->clear();
    for (const auto& it : runtime_input_shape) {
      auto name = it.first;
      auto input_shape = it.second;
      PADDLE_ENFORCE_EQ(
469 470
          min_input_shape_.count(name),
          true,
471 472
          platform::errors::InvalidArgument(
              "TRT dynamic_shape min_input_shape %s not found.", name));
473 474
      PADDLE_ENFORCE_EQ(min_input_shape_[name].size(),
                        input_shape.size(),
475 476 477 478
                        platform::errors::InvalidArgument(
                            "TRT dynamic_shape min_input_shape %s size not "
                            "equal, the min_input_shape[%s].size()=%d"
                            ", but the runtime_input_shape[%s].size()=%d.",
479 480 481 482
                            name,
                            name,
                            min_input_shape_[name].size(),
                            name,
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
                            input_shape.size()));
      auto bak_min_shape = min_input_shape_[name];
      auto bak_max_shape = max_input_shape_[name];
      bool min_change = false;
      bool max_change = false;
      for (size_t d = 0; d < input_shape.size(); ++d) {
        if (input_shape[d] < min_input_shape_[name][d]) {
          ret = true;
          min_change = true;
          min_input_shape_[name][d] = input_shape[d];
        }
        if (input_shape[d] > max_input_shape_[name][d]) {
          ret = true;
          max_change = true;
          max_input_shape_[name][d] = input_shape[d];
        }
      }

      if (min_change)
        LOG(INFO) << "refactor shape range: " << name << ", min_shape from "
                  << Vec2Str(bak_min_shape) << " to "
                  << Vec2Str(min_input_shape_[name]);
      if (max_change)
        LOG(INFO) << "refactor shape range: " << name << ", max_shape from "
                  << Vec2Str(bak_max_shape) << " to "
                  << Vec2Str(max_input_shape_[name]);
      if (min_change || max_change) changed->push_back(name);
    }
    return ret;
  }

514 515
  bool use_oss() { return use_oss_; }
  bool with_ernie() { return with_ernie_; }
516
  bool with_interleaved() { return with_interleaved_; }
517
  bool disable_trt_plugin_fp16() { return disable_trt_plugin_fp16_; }
518
  bool with_dynamic_shape() { return with_dynamic_shape_; }
519
  AnalysisConfig::Precision precision() { return precision_; }
520

521
#if IS_TRT_VERSION_GE(6000)
522
  nvinfer1::IPluginV2Layer* AddDynamicPlugin(
523 524
      nvinfer1::ITensor* const* inputs,
      int num_inputs,
525
      plugin::DynamicPluginTensorRT* plugin) {
526 527 528 529 530
    owned_pluginv2_.emplace_back(plugin);
    return network()->addPluginV2(inputs, num_inputs, *plugin);
  }
#endif

531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
  bool Has(const std::string& attr_name) const {
    return attrs_.count(attr_name) > 0;
  }

  void Erase(const std::string& attr_name) {
    if (!Has(attr_name)) {
      return;
    }
    if (attr_dels_.find(attr_name) != attr_dels_.end()) {
      attr_dels_[attr_name]();
      attr_dels_.erase(attr_name);
    }
    attrs_.erase(attr_name);
  }

  // Set a pointer to the attribute. Engine takes ownership of the attribute.
  template <typename AttrType>
  void Set(const std::string& attr_name, AttrType* attr) {
    if (attrs_.count(attr_name) == 0) {
      PADDLE_ENFORCE_EQ(
551 552
          attrs_.count(attr_name),
          0,
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
          platform::errors::AlreadyExists(
              "Attribute %s already set in trt engine.", attr_name));
    } else {
      VLOG(3) << "Setting the attribute " << attr_name << " for trt engine "
              << this;
    }
    attrs_[attr_name] = attr;
    attr_dels_[attr_name] = [attr, attr_name]() {
      VLOG(3) << "deleting " << attr_name;
      delete attr;
    };
  }

  // Set a pointer to the attribute. Engine doesn't take ownership. Caller
  // should delete the attribute.
  template <typename AttrType>
  void SetNotOwned(const std::string& attr_name, AttrType* attr) {
    PADDLE_ENFORCE_EQ(
571 572
        attrs_.count(attr_name),
        0,
573 574 575 576 577 578 579 580
        platform::errors::AlreadyExists(
            "Attribute %s already set in trt engine.", attr_name));
    attrs_[attr_name] = attr;
  }

  // Get a reference to the attributed previously set.
  template <typename AttrType>
  AttrType& Get(const std::string& attr_name) const {
581 582
    PADDLE_ENFORCE_NE(attrs_.find(attr_name),
                      attrs_.end(),
583 584 585
                      platform::errors::InvalidArgument(
                          "Attribute %s not found in trt engine.", attr_name));
    try {
586 587
      return *paddle::any_cast<AttrType*>(attrs_.at(attr_name));
    } catch (paddle::bad_any_cast&) {
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
      auto TypeToString = [](const std::type_info& info) -> std::string {
        if (std::type_index(info) == std::type_index(typeid(bool*))) {
          return "bool";
        } else if (std::type_index(info) == std::type_index(typeid(int*))) {
          return "int";
        } else if (std::type_index(info) ==
                   std::type_index(typeid(const int*))) {
          return "const int";
        } else if (std::type_index(info) ==
                   std::type_index(typeid(std::string*))) {
          return "std::string";
        }
        return info.name();
      };

      PADDLE_THROW(platform::errors::InvalidArgument(
604 605
          "Invalid type for attritube %s, expected: %s, actual: %s.",
          attr_name,
606 607 608 609 610
          TypeToString(typeid(AttrType*)),
          TypeToString(attrs_.at(attr_name).type())));
    }
  }

W
wenbin 已提交
611
  void SetProfileNum(int num) { max_profile_num_ = num; }
612 613 614 615

  void GetEngineInfo();

  void SetUseInspector(bool use_inspector) { use_inspector_ = use_inspector; }
616

Y
Yan Chunwei 已提交
617
 private:
N
nhzlx 已提交
618 619 620 621 622
  // Each ICudaEngine object is bound to a specific GPU when it is instantiated,
  // ensure that the thread is associated with the correct device by calling
  // freshDeviceId().
  void freshDeviceId();

Y
Yan Chunwei 已提交
623 624
  // the max batch size
  int max_batch_;
625 626
  // the runtime batch size
  static int runtime_batch_;
Y
Yan Chunwei 已提交
627 628
  // the max memory size the engine uses
  int max_workspace_;
629

Z
Zhaolong Xing 已提交
630
  AnalysisConfig::Precision precision_;
N
nhzlx 已提交
631 632 633
  TRTInt8Calibrator* calibrator_;
  // batch size of the current data, will be updated each Executation.
  int batch_size_{-1};
N
nhzlx 已提交
634

N
nhzlx 已提交
635
  int device_id_;
W
wenbin 已提交
636 637 638
  int max_profile_num_{1};
  int cur_profile_num_{0};
  std::unordered_map<std::thread::id, int> profile_index_;
639 640 641
  ShapeMapType min_input_shape_;
  ShapeMapType max_input_shape_;
  ShapeMapType optim_input_shape_;
642
  bool disable_trt_plugin_fp16_{false};
643
  bool use_oss_{false};
644 645
  bool use_dla_{false};
  int dla_core_{0};
646
  bool with_ernie_{false};
647
  bool with_interleaved_{false};
Y
Yan Chunwei 已提交
648 649 650
  nvinfer1::ILogger& logger_;

  // max data size for the buffers.
L
Luo Tao 已提交
651 652
  std::unordered_map<std::string /*name*/, nvinfer1::ITensor* /*ITensor*/>
      itensor_map_;
653

654
  std::vector<std::unique_ptr<plugin::PluginTensorRT>> owned_plugin_;
655
  std::vector<std::unique_ptr<plugin::PluginTensorRTV2Ext>> owned_plugin_v2ext_;
656
  std::vector<std::unique_ptr<nvinfer1::IPluginV2IOExt>> owned_plugin_v2ioext_;
Y
Yan Chunwei 已提交
657 658 659 660

  // TensorRT related internal members
  template <typename T>
  struct Destroyer {
661 662 663 664 665
    void operator()(T* x) {
      if (x) {
        x->destroy();
      }
    }
Y
Yan Chunwei 已提交
666 667 668 669 670 671
  };
  template <typename T>
  using infer_ptr = std::unique_ptr<T, Destroyer<T>>;
  infer_ptr<nvinfer1::IBuilder> infer_builder_;
  infer_ptr<nvinfer1::INetworkDefinition> infer_network_;
  infer_ptr<nvinfer1::ICudaEngine> infer_engine_;
672 673
  std::unordered_map<std::thread::id, infer_ptr<nvinfer1::IExecutionContext>>
      infer_context_;
N
nhzlx 已提交
674
  infer_ptr<nvinfer1::IHostMemory> ihost_memory_;
675
  std::unordered_map<nvinfer1::ITensor*, float> quant_dynamic_range_;
676

677
  std::unordered_map<std::string, paddle::any> attrs_;
678 679
  std::unordered_map<std::string, std::function<void(void)>> attr_dels_;

680 681 682
  // For dynamic shape
  bool with_dynamic_shape_{false};
#if IS_TRT_VERSION_GE(6000)
W
wenbin 已提交
683
  int binding_num_;
684
  infer_ptr<nvinfer1::IBuilderConfig> infer_builder_config_;
W
wenbin 已提交
685
  std::vector<nvinfer1::IOptimizationProfile*> optim_profiles_;
686
  std::vector<std::unique_ptr<plugin::DynamicPluginTensorRT>> owned_pluginv2_;
687
#endif
688
  std::mutex mutex_;
689
  bool use_inspector_;
Y
Yan Chunwei 已提交
690 691
};  // class TensorRTEngine

692
// Add a layer__ into engine__ with args ARGS.
Y
Yan Chunwei 已提交
693 694 695 696 697 698 699 700 701
// For example:
//
// Reference
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#charRNN_define_network
//
// will add a fully connected layer into the engine.
// TensorRT has too many layers, so that is not wise to add member functions for
// them, and an macro like this is more extensible when underlying TensorRT
// library add new layer supports.
702
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ...) \
703
  engine__->network()->add##layer__(__VA_ARGS__)
Y
Yan Chunwei 已提交
704

705 706 707 708 709 710 711 712 713 714 715 716
class TRTEngineManager {
 public:
  bool Empty() const { return engines_.size() == 0; }
  bool Has(const std::string& name) const {
    if (engines_.count(name) == 0) return false;
    return engines_.at(name).get() != nullptr;
  }

  TensorRTEngine* Get(const std::string& name) const {
    return engines_.at(name).get();
  }

Z
Zhaolong Xing 已提交
717
  TensorRTEngine* Create(
718 719 720
      std::string name,
      int max_batch,
      int max_workspace,
Z
Zhaolong Xing 已提交
721
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
722 723
      TRTInt8Calibrator* calibrator = nullptr,
      int device_id = 0,
724 725 726
      const std::map<std::string, std::vector<int>> min_input_shape = {},
      const std::map<std::string, std::vector<int>> max_input_shape = {},
      const std::map<std::string, std::vector<int>> optim_input_shape = {},
727
      bool disable_trt_plugin_fp16 = false,
Z
Zhaolong Xing 已提交
728
      nvinfer1::ILogger& logger = NaiveLogger::Global()) {
729 730 731 732 733 734 735 736 737 738
    auto* p = new TensorRTEngine(max_batch,
                                 max_workspace,
                                 precision,
                                 calibrator,
                                 device_id,
                                 min_input_shape,
                                 max_input_shape,
                                 optim_input_shape,
                                 disable_trt_plugin_fp16,
                                 logger);
739 740 741 742 743 744 745 746 747 748
    engines_[name].reset(p);
    return p;
  }

  void DeleteAll() {
    for (auto& item : engines_) {
      item.second.reset(nullptr);
    }
  }

W
Wilber 已提交
749 750 751 752 753 754 755 756
  void DeleteKey(const std::string& key) {
    auto iter = engines_.find(key);
    if (iter != engines_.end()) {
      iter->second.reset(nullptr);
      engines_.erase(iter);
    }
  }

757 758 759 760
 private:
  std::unordered_map<std::string, std::unique_ptr<TensorRTEngine>> engines_;
};

Y
Yan Chunwei 已提交
761 762 763
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle