sendrecvop_utils.cc 8.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/detail/sendrecvop_utils.h"
Y
Yi Wang 已提交
16

T
fix ci  
typhoonzero 已提交
17
#include <nccl.h>
18
#include <sys/time.h>
Y
Yi Wang 已提交
19 20
#include <thread>  // NOLINT

21 22 23 24 25
#include "google/protobuf/io/coded_stream.h"
#include "google/protobuf/io/zero_copy_stream.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/operators/detail/bytebuffer_stream.h"
#include "paddle/fluid/operators/detail/proto_encoder_helper.h"
26
#include "paddle/fluid/operators/detail/variable_response.h"
G
gongweibao 已提交
27 28 29 30 31

namespace paddle {
namespace operators {
namespace detail {

32 33
void SerializeToByteBuffer(const std::string& name, framework::Variable* var,
                           const platform::DeviceContext& ctx,
Y
Yancey1989 已提交
34 35
                           ::grpc::ByteBuffer* msg,
                           const std::string& out_name) {
36 37 38 39 40 41 42
  using VarMsg = sendrecv::VariableMessage;
  // When using GPU, need to free the copied CPU buffer
  // when the ByteBuffer destroies
  // TODO(typhoonzero): add unref here, if we have dependent
  // parallelism execution, need to know when to free the tensor.
  DestroyCallback destroy_callback = [](void* backing) {};

G
gongweibao 已提交
43 44 45
  auto buffer = std::unique_ptr<char[]>(new char[1024]);
  void* buf = buffer.get();

Y
Yancey 已提交
46
  void* payload = nullptr;
T
typhoonzero 已提交
47
  size_t payload_size = 0;
Y
Yi Wang 已提交
48
  ProtoEncodeHelper e(static_cast<char*>(buf), 1024);
49 50 51 52 53
  e.WriteString(VarMsg::kVarnameFieldNumber, name);
  if (var->IsType<framework::LoDTensor>()) {
    e.WriteUint64(VarMsg::kTypeFieldNumber, 0);
  } else if (var->IsType<framework::SelectedRows>()) {
    e.WriteUint64(VarMsg::kTypeFieldNumber, 1);
T
typhoonzero 已提交
54 55
  } else if (var->IsType<ncclUniqueId>()) {
    // NOTE: sendrecv only support RAW type for NCCL_ID
T
typhoonzero 已提交
56
    VLOG(3) << "serilizing: setting var type nccl id";
T
typhoonzero 已提交
57
    e.WriteUint64(VarMsg::kTypeFieldNumber, 2);
58 59
  }

Y
Yancey1989 已提交
60 61 62
  if (!out_name.empty()) {
    e.WriteString(VarMsg::kOutVarnameFieldNumber, out_name);
  }
T
typhoonzero 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
  if (var->IsType<framework::LoDTensor>()) {
    // ===========================Tensor==================================
    auto tensor = var->Get<framework::LoDTensor>();
    e.WriteUint64(VarMsg::kDataTypeFieldNumber,
                  framework::ToDataType(tensor.type()));
    for (auto& dim : framework::vectorize(tensor.dims())) {
      e.WriteUint64(VarMsg::kDimsFieldNumber, dim);
    }
    auto lod = tensor.lod();  // std::vector<Vector<size_t>>
    if (lod.size() > 0) {
      e.WriteUint64(VarMsg::kLodLevelFieldNumber, lod.size());

      for (auto& each : lod) {
        e.WriteVarlengthBeginning(VarMsg::kLodFieldNumber,
                                  2 +      // tag + varintlength of submessage
                                      1 +  // kLodDataFieldNumber
                                      each.size());
        // auto copied from GPU
        for (auto& d : each) {
          e.WriteUint64(VarMsg::LodData::kLodDataFieldNumber, d);
83 84
        }
      }
T
typhoonzero 已提交
85 86
    }
    if (platform::is_gpu_place(ctx.GetPlace())) {
87
#ifdef PADDLE_WITH_CUDA
T
typhoonzero 已提交
88 89 90 91 92 93 94 95 96 97 98 99
      PADDLE_ENFORCE(platform::is_gpu_place(tensor.place()));
      platform::CPUPlace cpu;
      auto& gpu_dev_ctx = static_cast<const platform::CUDADeviceContext&>(ctx);
      auto copy_size = tensor.numel() * framework::SizeOfType(tensor.type());
      payload = memory::Alloc(cpu, copy_size);

      memory::Copy(cpu, payload,
                   boost::get<platform::CUDAPlace>(tensor.place()),
                   reinterpret_cast<const void*>(tensor.data<void>()),
                   copy_size, gpu_dev_ctx.stream());
      ctx.Wait();
      destroy_callback = [](void* backing) {
100
        platform::CPUPlace cpu;
T
typhoonzero 已提交
101 102
        memory::Free(cpu, backing);
      };
103

104
#endif
T
typhoonzero 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    } else {
      payload = tensor.data<void>();
    }
    payload_size = tensor.numel() * framework::SizeOfType(tensor.type());
    e.WriteVarlengthBeginning(VarMsg::kSerializedFieldNumber, payload_size);
  } else if (var->IsType<framework::SelectedRows>()) {
    // ===========================SELECTED
    // ROWS==================================
    // TODO(typhoonzero): selectedrows implement should not use unique_ptr
    auto* slr = var->GetMutable<framework::SelectedRows>();
    e.WriteUint64(VarMsg::kDataTypeFieldNumber,
                  framework::ToDataType(slr->value().type()));
    for (auto& dim : framework::vectorize(slr->value().dims())) {
      e.WriteUint64(VarMsg::kDimsFieldNumber, dim);
    }
    e.WriteUint64(VarMsg::kLodLevelFieldNumber, 0);
    e.WriteUint64(VarMsg::kSlrHeightFieldNumber, slr->height());
    auto* tensor = slr->mutable_value();
    if (platform::is_gpu_place(ctx.GetPlace())) {
124
#ifdef PADDLE_WITH_CUDA
T
typhoonzero 已提交
125 126 127 128 129 130 131 132 133 134
      platform::CPUPlace cpu;
      auto& gpu_dev_ctx = static_cast<const platform::CUDADeviceContext&>(ctx);
      auto copy_size = tensor->numel() * framework::SizeOfType(tensor->type());
      payload = memory::Alloc(cpu, copy_size);
      memory::Copy(cpu, payload,
                   boost::get<platform::CUDAPlace>(tensor->place()),
                   reinterpret_cast<const void*>(tensor->data<void>()),
                   copy_size, gpu_dev_ctx.stream());
      ctx.Wait();
      destroy_callback = [](void* backing) {
135
        platform::CPUPlace cpu;
T
typhoonzero 已提交
136 137
        memory::Free(cpu, backing);
      };
138
#endif
T
typhoonzero 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152
    } else {
      payload = slr->mutable_value()->data<void>();
    }
    payload_size = tensor->numel() * framework::SizeOfType(tensor->type());
    e.WriteVarlengthBeginning(VarMsg::kSerializedFieldNumber, payload_size);
  } else if (var->IsType<ncclUniqueId>()) {
    // ===========================NCCL ID==================================
    e.WriteVarlengthBeginning(VarMsg::kSerializedFieldNumber,
                              NCCL_UNIQUE_ID_BYTES);
    ncclUniqueId* uid = var->GetMutable<ncclUniqueId>();
    e.WriteRawBytes(std::string(uid->internal, NCCL_UNIQUE_ID_BYTES));
  } else {
    PADDLE_THROW("Serialize does not support type: %s",
                 typeid(var->Type()).name());
153
  }
T
typhoonzero 已提交
154

T
typhoonzero 已提交
155
  if (var->IsType<ncclUniqueId>()) {
T
typhoonzero 已提交
156 157 158 159 160 161 162 163
    // for serialize NCCL_ID
    ::grpc::Slice slices(e.size());
    memcpy(const_cast<uint8_t*>(slices.begin()), e.data(), e.size());
    ::grpc::ByteBuffer tmp(&slices, 1);
    msg->Swap(&tmp);
    return;
  }

164 165 166 167 168 169 170 171 172 173 174 175 176 177
  // steal reference of tensor data
  ::grpc::Slice slices[4];  // metadata, tensor, rows meta, rows
  int num_slices = 2;       // only SelectedRows have rows buffer
  slices[0] = ::grpc::Slice(e.size());
  memcpy(const_cast<uint8_t*>(slices[0].begin()), e.data(), e.size());
  slices[1] = ::grpc::Slice(
      grpc_slice_new_with_user_data(payload, payload_size, destroy_callback,
                                    static_cast<char*>(payload)),
      ::grpc::Slice::STEAL_REF);

  if (framework::ToVarType(var->Type()) ==
      framework::proto::VarType_Type_SELECTED_ROWS) {
    auto* slr = var->GetMutable<framework::SelectedRows>();

Y
Yi Wang 已提交
178
    ProtoEncodeHelper e2(static_cast<char*>(buf), 128);
179 180
    // NOTE: rows is of type int64_t
    size_t rows_memory_size =
T
typhoonzero 已提交
181
        slr->rows().size() * framework::SizeOfType(typeid(int64_t));
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
    e2.WriteVarlengthBeginning(VarMsg::kRowsFieldNumber, rows_memory_size);
    slices[2] = ::grpc::Slice(e2.size());
    memcpy(const_cast<uint8_t*>(slices[2].begin()), e2.data(), e2.size());

    slices[3] = ::grpc::Slice(
        grpc_slice_new_with_user_data(
            const_cast<void*>(
                reinterpret_cast<const void*>(slr->rows().data())),
            rows_memory_size,
            [](void* backing) {
              // TODO(typhoonzero): add unref here, same as above.
            },
            const_cast<char*>(
                reinterpret_cast<const char*>(slr->rows().data()))),
        ::grpc::Slice::STEAL_REF);
    num_slices = 4;
  }

  ::grpc::ByteBuffer tmp(&slices[0], num_slices);
  msg->Swap(&tmp);
}

void DeserializeFromByteBuffer(const ::grpc::ByteBuffer& msg,
                               const platform::DeviceContext& ctx,
206
                               const framework::Scope* scope,
Y
Yi Wang 已提交
207
                               framework::Variable** var) {
208
  operators::detail::VariableResponse resp(scope, &ctx);
209
  PADDLE_ENFORCE(resp.Parse(msg) == 0, "parse bytebuffer to tensor error!");
Y
Yi Wang 已提交
210
  *var = resp.GetVar();
211 212
}

G
gongweibao 已提交
213 214
}  // namespace detail
}  // namespace operators
Y
Yancey 已提交
215
}  // namespace paddle