dist_context.py 34.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

import copy
from collections import defaultdict
17
import paddle.fluid
18
from paddle.fluid import framework
19
from paddle.fluid.framework import get_flags, set_flags
20
from paddle.fluid import core
21
from paddle.distributed.passes import PassContext
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
from .dist_attribute import TensorDistributedAttribute
from .dist_attribute import OperatorDistributedAttribute
from .dist_tensor import DistributedTensor
from .dist_op import DistributedOperator
from .process_mesh import ProcessMesh

# There always exists a default context for user. And user can set it to another one.
_g_default_distributed_context = None


def get_default_distributed_context():
    global _g_default_distributed_context
    if _g_default_distributed_context is None:
        dist_context = DistributedContext()
        set_default_distributed_context(dist_context)
    return _g_default_distributed_context


def set_default_distributed_context(dist_context):
    global _g_default_distributed_context
    _g_default_distributed_context = dist_context


45 46 47 48
def _node_id(node):
    return (node.node.graph_id(), node.node.id())


49 50 51 52 53 54
class DistributedContext:
    """
    DistributedContext is used to collect related distributed information for program and graph.
    One auto-parallel run should use its own DistributedContext to avoid interfering other run.
    """

55 56 57
    def __init__(self,
                 serial_main_prog=None,
                 serial_startup_prog=None,
58
                 serial_optimizer=None,
59 60 61
                 serial_loss=None,
                 feed_vars=None,
                 fetch_vars=None,
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
                 strategy=None):
        # Data members related to original programs (unchanged)
        self._original_serial_main_program = serial_main_prog
        self._original_serial_startup_program = serial_startup_prog
        self._original_serial_loss = serial_loss
        self._original_serial_optimizer = serial_optimizer
        if self._original_serial_main_program is None:
            self._original_serial_main_program = paddle.fluid.default_main_program(
            )
        if self._original_serial_startup_program is None:
            self._original_serial_startup_program = paddle.fluid.default_startup_program(
            )

        # Data members related to programs (changed)
        self._serial_main_program = None
        self._serial_startup_program = None
78 79 80 81
        self._serial_loss = serial_loss
        self._serial_optimizer = serial_optimizer
        self._serial_feed_vars = feed_vars
        self._serial_fetch_vars = fetch_vars
82 83

        # Data members related to the program
84 85
        self._dist_tensors_for_program = {}
        self._dist_ops_for_program = {}
86
        self._block_state = BlockState()
87 88

        # Data members related to the graph
89
        self._serial_graph = None
90 91
        self._dist_tensors_for_graph = {}
        self._dist_ops_for_graph = {}
92 93
        self._node_id_to_tensor_id = {}
        self._node_id_to_op_id = {}
94

95
        # Data members related to the distributed programs
96
        # Distributed programs
97 98
        self._dist_main_programs = {}
        self._dist_startup_programs = {}
99

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
        # Distributed Strategy
        self._strategy = strategy

        # Pass Context
        self._pass_context = PassContext()

        # Distributed Operator Context
        self._dist_op_context = DistributedOperatorContext()

        # Other data members
        self._process_meshes = []
        self._serial_ordered_tensor_nodes = []
        self._serial_ordered_op_nodes = []
        self._serial_ordered_nodes = []
        # self._tensor_id_to_tensor_node_ids = {}

        self._is_initialized = False

118
    @property
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
    def serial_main_program(self):
        return self._serial_main_program

    @serial_main_program.setter
    def serial_main_program(self, program):
        # if self._serial_main_program:
        #     print("WARNING: The program attached to this distributed context will be replaced by the new one.")
        self._original_serial_main_program = program
        self._serial_main_program = program

    @property
    def serial_startup_program(self):
        return self._serial_startup_program

    @property
    def serial_loss(self):
        return self._serial_loss

    @property
    def serial_optimizer(self):
        return self._serial_optimizer

141 142 143 144 145 146 147
    @property
    def serial_feed_vars(self):
        return self._serial_feed_vars

    @property
    def serial_fetch_vars(self):
        return self._serial_fetch_vars
148 149 150 151 152

    @property
    def strategy(self):
        return self._strategy

153 154 155 156
    @property
    def serial_graph(self):
        return self._serial_graph

157 158 159 160
    @property
    def serial_ordered_nodes(self):
        return self._serial_ordered_nodes

161 162 163 164
    @property
    def process_meshes(self):
        return self._process_meshes

165 166 167 168
    @property
    def pass_context(self):
        return self._pass_context

169 170 171 172
    @property
    def dist_op_context(self):
        return self._dist_op_context

173 174 175 176
    @property
    def block_state(self):
        return self._block_state

177 178 179 180 181 182 183 184
    @property
    def dist_main_programs(self):
        return self._dist_main_programs

    @property
    def dist_startup_programs(self):
        return self._dist_startup_programs

185
    @property
186
    def has_annotation(self):
187 188 189
        return len(self._dist_tensors_for_program) or len(
            self._dist_ops_for_program)

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
    def initialize(self):
        if not self._is_initialized:
            self._serial_main_program = self._original_serial_main_program.clone(
            )
            self._serial_startup_program = self._original_serial_startup_program.clone(
            )
            self._serial_main_program = self._original_serial_main_program
            self._serial_startup_program = self._original_serial_startup_program
            self._serial_loss = self._original_serial_loss
            self._serial_optimizer = self._original_serial_optimizer
            self._init_dist_attr_for_program()
            self._tensors_ids = list(self._dist_tensors_for_program.keys())
            self._ops_ids = list(self._dist_ops_for_program.keys())
            set_flags({"FLAGS_convert_all_blocks": True})
            self._serial_graph = framework.IrGraph(
                core.Graph(self._serial_main_program.desc))
            self._init_dist_attr_for_graph()
            self._is_initialized = True

    # def reset(self,
    #           skip_dist_tensors=None,
    #           skip_dist_ops=None,
    #           skip_tensor_dist_attr_fields=None,
    #           skip_op_dist_attr_fields=None):
    #     self._serial_main_program = self._original_serial_main_program.clone()
    #     self._serial_startup_program = self._original_serial_startup_program.clone()
    #     new_tensors_ids = []
    #     for tensor_id, dist_tensor in self._dist_tensors_for_program.items():
    #         if tensor_id in self._tensors_ids:
    #             dist_tensor.dist_attr.reset(skip_tensor_dist_attr_fields)
    #         else:
    #             new_tensors_ids.append(tensor_id)
    #     for tensor_id in new_tensors_ids:
    #         self._dist_tensors_for_program.pop(tensor_id)
    #     new_ops_ids = []
    #     for op_id, dist_op in self._dist_ops_for_program.items():
    #         if op_id in self._ops_ids:
    #             dist_op.dist_attr.reset(skip_op_dist_attr_fields)
    #         else:
    #             new_ops_ids.append(op_id)
    #     for op_id in new_ops_ids:
    #         self._dist_ops_for_program.pop(op_id)

    #     self.copy_dist_attr_from_program_to_graph()

    #     self._dist_main_programs = {}
    #     self._dist_startup_programs = {}

    #     self._pass_context = PassContext()

    #     self._dist_op_context = DistributedOperatorContext()

    #     self._process_meshes = []

244 245 246 247 248 249 250 251
    def add_process_mesh(self, process_mesh):
        assert isinstance(process_mesh, ProcessMesh), \
            'The type of dim_mapping must be ProcessMesh.'
        if process_mesh not in self.process_meshes:
            self._process_meshes.append(process_mesh)

    def add_dist_tensor_for_program(self, dist_tensor):
        inner_serial_tensor = dist_tensor.serial_tensor
252
        inner_serial_tensor_id = inner_serial_tensor.desc.original_id()
253 254 255 256
        self._dist_tensors_for_program[inner_serial_tensor_id] = dist_tensor

    def add_dist_op_for_program(self, dist_op):
        inner_serial_op = dist_op.serial_op
257
        inner_serial_op_id = inner_serial_op.desc.original_id()
258 259 260 261
        self._dist_ops_for_program[inner_serial_op_id] = dist_op

    def get_dist_tensor_for_program(self, serial_tensor):
        serial_tensor_id = serial_tensor.desc.id()
262 263 264 265 266 267 268 269 270 271 272
        dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id, None)
        if dist_tensor:
            return dist_tensor
        else:
            serial_tensor_id = serial_tensor.desc.original_id()
            dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id,
                                                             None)
            if dist_tensor:
                return dist_tensor
            else:
                return None
273 274

    def get_dist_tensor_for_graph(self, serial_tensor_node):
275
        serial_tensor_node_id = _node_id(serial_tensor_node)
276 277
        return self._dist_tensors_for_graph.get(serial_tensor_node_id, None)

278 279 280 281 282 283 284 285 286 287 288 289
    def get_dist_op_for_program(self, serial_op):
        serial_op_id = serial_op.desc.id()
        dist_op = self._dist_ops_for_program.get(serial_op_id, None)
        if dist_op:
            return dist_op
        else:
            serial_op_id = serial_op.desc.original_id()
            dist_op = self._dist_ops_for_program.get(serial_op_id, None)
            if dist_op:
                return dist_op
            else:
                return None
290

291 292 293 294 295
    def del_dist_op_for_program(self, serial_tensor):
        serial_tensor_id = serial_tensor.desc.id()
        if self._dist_ops_for_program.get(serial_tensor_id, None):
            del self._dist_ops_for_program[serial_tensor_id]

296
    def get_dist_op_for_graph(self, serial_op_node):
297
        serial_op_node_id = _node_id(serial_op_node)
298
        return self._dist_ops_for_graph.get(serial_op_node_id, None)
299 300 301 302 303 304 305

    def get_tensor_dist_attr_for_program(self, serial_tensor):
        serial_tensor_id = serial_tensor.desc.id()
        dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id, None)
        if dist_tensor:
            return dist_tensor.dist_attr
        else:
306 307 308 309 310 311 312
            serial_tensor_id = serial_tensor.desc.original_id()
            dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id,
                                                             None)
            if dist_tensor:
                return dist_tensor.dist_attr
            else:
                return None
313

314 315 316 317 318 319 320
    def get_tensor_dist_attr_for_program_with_id(self, tensor_id):
        dist_tensor = self._dist_tensors_for_program.get(tensor_id, None)
        if dist_tensor:
            return dist_tensor.dist_attr
        else:
            return None

321 322 323 324 325
    def set_tensor_dist_attr_for_program(self, serial_tensor, dist_attr):
        dist_tensor = DistributedTensor(serial_tensor, dist_attr)
        self.add_dist_tensor_for_program(dist_tensor)

    def get_tensor_dist_attr_for_graph(self, serial_tensor_node):
326
        serial_tensor_node_id = _node_id(serial_tensor_node)
327 328 329 330 331 332 333 334 335 336 337 338 339
        dist_tensor = self._dist_tensors_for_graph.get(serial_tensor_node_id,
                                                       None)
        if dist_tensor:
            return dist_tensor.dist_attr
        else:
            return None

    def get_op_dist_attr_for_program(self, serial_op):
        serial_op_id = serial_op.desc.id()
        dist_op = self._dist_ops_for_program.get(serial_op_id, None)
        if dist_op:
            return dist_op.dist_attr
        else:
340 341 342 343 344 345
            serial_op_id = serial_op.desc.original_id()
            dist_op = self._dist_ops_for_program.get(serial_op_id, None)
            if dist_op:
                return dist_op.dist_attr
            else:
                return None
346

347 348 349 350 351 352 353
    def get_op_dist_attr_for_program_with_id(self, op_id):
        dist_op = self._dist_ops_for_program.get(op_id, None)
        if dist_op:
            return dist_op.dist_attr
        else:
            return None

354 355 356 357 358
    def set_op_dist_attr_for_program(self, serial_op, dist_attr):
        dist_op = DistributedOperator(serial_op, dist_attr)
        self.add_dist_op_for_program(dist_op)

    def get_op_dist_attr_for_graph(self, serial_op_node):
359
        serial_op_node_id = _node_id(serial_op_node)
360 361 362 363 364 365
        dist_op = self._dist_ops_for_graph.get(serial_op_node_id, None)
        if dist_op:
            return dist_op.dist_attr
        else:
            return None

366 367
    def get_dist_attr_for_graph(self, serial_node):
        if serial_node.is_var() and serial_node.var() is not None:
368
            serial_tensor_node_id = _node_id(serial_node)
369 370 371 372 373 374 375
            dist_tensor = self._dist_tensors_for_graph.get(
                serial_tensor_node_id, None)
            if dist_tensor:
                return dist_tensor.dist_attr
            else:
                return None
        if serial_node.is_op() and serial_node.op() is not None:
376
            serial_op_node_id = _node_id(serial_node)
377 378 379 380 381 382
            dist_op = self._dist_ops_for_graph.get(serial_op_node_id, None)
            if dist_op:
                return dist_op.dist_attr
            else:
                return None
        return None
383

384
    def _init_dist_attr_for_program(self, no_default=False):
385
        # Copy the dist tensors and dist ops annotated by users from the default context
386 387 388 389 390 391
        if not no_default:
            default_ctx = get_default_distributed_context()
            self._process_meshes = copy.deepcopy(default_ctx.process_meshes)
        else:
            default_ctx = self
        for block in self._serial_main_program.blocks:
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
            for tensor in block.vars.values():
                # Copy the distributed tensors in the default context
                default_dist_tensor = default_ctx.get_dist_tensor_for_program(
                    tensor)
                if default_dist_tensor and default_ctx is not self:
                    self.add_dist_tensor_for_program(default_dist_tensor)
                current_dist_tensor = self.get_dist_tensor_for_program(tensor)
                if current_dist_tensor is None:
                    dist_tensor = DistributedTensor(tensor)
                    self.add_dist_tensor_for_program(dist_tensor)
            for op in block.ops:
                # Copy the distributed operators in the default context
                default_dist_op = default_ctx.get_dist_op_for_program(op)
                if default_dist_op and default_ctx is not self:
                    self.add_dist_op_for_program(default_dist_op)
                current_dist_op = self.get_dist_op_for_program(op)
                if current_dist_op is None:
                    dist_op = DistributedOperator(op)
                    self.add_dist_op_for_program(dist_op)

412
    def _order_nodes_by_program_order(self):
413 414
        def _contains(nodes, target_node):
            for node in nodes:
415
                if _node_id(node) == _node_id(target_node):
416 417 418
                    return True
            return False

419 420 421 422 423 424
        serial_ordered_tensor_nodes = []
        serial_ordered_op_nodes = []
        all_nodes = []
        for idx, graph in enumerate(self._serial_graph.all_sub_graphs()):
            for node in graph.all_nodes():
                all_nodes.append(node)
425 426
        for node in all_nodes:
            if node.is_var() and node.var() is not None:
427
                serial_ordered_tensor_nodes.append(node)
428
            if node.is_op() and node.op() is not None:
429 430 431 432 433 434 435 436 437 438
                serial_ordered_op_nodes.append(node)
        serial_ordered_tensor_nodes.sort(
            key=lambda node: node.node.original_desc_id())
        serial_ordered_op_nodes.sort(
            key=lambda node: node.node.original_desc_id())
        num_nodes_before = len(serial_ordered_tensor_nodes) + len(
            serial_ordered_op_nodes)

        new_serial_ordered_tensor_nodes = []
        new_serial_ordered_op_nodes = []
439
        new_serial_ordered_nodes = []
440
        for op_node in serial_ordered_op_nodes:
441 442 443 444
            tensor_nodes = []
            for tensor_node in op_node.inputs:
                if tensor_node.is_var() \
                    and tensor_node.var() is not None \
445
                    and not _contains(new_serial_ordered_nodes, tensor_node):
446
                    tensor_nodes.append(tensor_node)
447
                    new_serial_ordered_tensor_nodes.append(tensor_node)
448
            tensor_nodes.sort(key=lambda node: node.node.original_desc_id())
449 450
            new_serial_ordered_nodes.extend(tensor_nodes)
            new_serial_ordered_nodes.append(op_node)
451
            new_serial_ordered_op_nodes.append(op_node)
452 453 454 455
            tensor_nodes = []
            for tensor_node in op_node.outputs:
                if tensor_node.is_var() \
                    and tensor_node.var() is not None \
456
                    and not _contains(new_serial_ordered_nodes, tensor_node):
457
                    tensor_nodes.append(tensor_node)
458 459
                    new_serial_ordered_tensor_nodes.append(tensor_node)
            tensor_nodes.sort(key=lambda node: node.node.original_desc_id())
460
            new_serial_ordered_nodes.extend(tensor_nodes)
461 462 463 464 465 466
        new_serial_ordered_tensor_nodes.sort(
            key=lambda node: node.node.original_desc_id())
        new_serial_ordered_op_nodes.sort(
            key=lambda node: node.node.original_desc_id())
        self._serial_ordered_tensor_nodes = new_serial_ordered_tensor_nodes
        self._serial_ordered_op_nodes = new_serial_ordered_op_nodes
467
        self._serial_ordered_nodes = new_serial_ordered_nodes
468 469 470 471 472 473 474 475 476 477 478
        assert len(self._serial_ordered_nodes) == len(
            self._serial_ordered_tensor_nodes) + len(
                self._serial_ordered_op_nodes)
        self._serial_orphan_tensor_nodes = []
        for tensor_node in serial_ordered_tensor_nodes:
            if not _contains(self._serial_ordered_tensor_nodes, tensor_node):
                self._serial_orphan_tensor_nodes.append(tensor_node)
        if len(self._serial_ordered_nodes) != num_nodes_before:
            print(
                "WARNING: there are some orphan tensors or ops which are not used in the execution."
            )
479

480 481 482
    def _init_dist_attr_for_graph(self):
        # Convert program to graph and initialize the distributed attributes
        self._order_nodes_by_program_order()
483
        for node in self.serial_ordered_nodes:
484
            if node.is_var() and node.var() is not None:
485 486 487 488 489 490 491
                dist_tensor = None
                tensor_id = node.node.original_desc_id()
                for cur_tensor_id, cur_dist_tensor in self._dist_tensors_for_program.items(
                ):
                    if tensor_id == cur_tensor_id \
                        or tensor_id == cur_dist_tensor.serial_tensor.desc.original_id():
                        dist_tensor = cur_dist_tensor
492 493
                        self._node_id_to_tensor_id[_node_id(
                            node)] = cur_tensor_id
494 495
                assert dist_tensor is not None, \
                    "Tensor must have a distributed tensor after the initialization for program."
496
                serial_tensor_node_id = _node_id(node)
497 498 499 500
                new_dist_tensor = DistributedTensor(dist_tensor.serial_tensor,
                                                    dist_tensor.dist_attr)
                self._dist_tensors_for_graph[
                    serial_tensor_node_id] = new_dist_tensor
501
            if node.is_op() and node.op() is not None:
502 503 504 505 506 507 508
                dist_op = None
                op_id = node.node.original_desc_id()
                for cur_op_id, cur_dist_op in self._dist_ops_for_program.items(
                ):
                    if op_id == cur_op_id \
                        or op_id == cur_dist_op.serial_op.desc.original_id():
                        dist_op = cur_dist_op
509
                        self._node_id_to_op_id[_node_id(node)] = cur_op_id
510 511
                assert dist_op is not None, \
                    "Operator must have a distributed operator after the initialization for program."
512
                serial_op_node_id = _node_id(node)
513 514 515
                new_dist_op = DistributedOperator(dist_op.serial_op,
                                                  dist_op.dist_attr)
                self._dist_ops_for_graph[serial_op_node_id] = new_dist_op
516 517 518 519 520 521 522 523 524

    def clear_dist_info_for_program(self):
        self._dist_tensors_for_program.clear()
        self._dist_ops_for_program.clear()

    def clear_dist_info_for_graph(self):
        self._dist_tensors_for_graph.clear()
        self._dist_ops_for_graph.clear()

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
    def copy_dist_attr_from_program_to_graph(self):
        for node in self.serial_ordered_nodes:
            if node.is_var() and node.var() is not None:
                dist_tensor = None
                tensor_id = node.node.original_desc_id()
                for cur_tensor_id, cur_dist_tensor in self._dist_tensors_for_program.items(
                ):
                    if tensor_id == cur_tensor_id \
                        or tensor_id == cur_dist_tensor.serial_tensor.desc.original_id():
                        dist_tensor = cur_dist_tensor
                assert dist_tensor is not None, \
                    "Tensor must have a distributed tensor after the initialization for program."
                serial_tensor_node_id = _node_id(node)
                new_dist_tensor = DistributedTensor(dist_tensor.serial_tensor,
                                                    dist_tensor.dist_attr)
                self._dist_tensors_for_graph[
                    serial_tensor_node_id] = new_dist_tensor
            if node.is_op() and node.op() is not None:
                dist_op = None
                op_id = node.node.original_desc_id()
                for cur_op_id, cur_dist_op in self._dist_ops_for_program.items(
                ):
                    if op_id == cur_op_id \
                        or op_id == cur_dist_op.serial_op.desc.original_id():
                        dist_op = cur_dist_op
                assert dist_op is not None, \
                    "Operator must have a distributed operator after the initialization for program."
                serial_op_node_id = _node_id(node)
                new_dist_op = DistributedOperator(dist_op.serial_op,
                                                  dist_op.dist_attr)
                self._dist_ops_for_graph[serial_op_node_id] = new_dist_op

557
    def copy_dist_attr_from_graph_to_program(self):
558
        assert self._is_initialized, \
559 560
            "Both program and graph must be initialized."
        updated_tensors = {}
561 562
        # all_nodes = self._serial_graph.all_nodes()
        all_nodes = self._serial_ordered_nodes
563 564
        for node in all_nodes:
            if node.is_var() and node.var() is not None:
565
                tensor_id = self._node_id_to_tensor_id[_node_id(node)]
566
                updated = updated_tensors.get(tensor_id, False)
567 568 569 570 571 572 573
                # If a var has multiples var nodes in graph, only use the first one for now
                if not updated:
                    tensor_dist_attr_for_graph = self.get_tensor_dist_attr_for_graph(
                        node)
                    dist_tensor_for_program = self._dist_tensors_for_program[
                        tensor_id]
                    dist_tensor_for_program.dist_attr = tensor_dist_attr_for_graph
574
                    updated_tensors[tensor_id] = True
575
            if node.is_op() and node.op() is not None:
576
                op_id = self._node_id_to_op_id[_node_id(node)]
577 578 579
                op_dist_attr_for_graph = self.get_op_dist_attr_for_graph(node)
                dist_op_for_program = self._dist_ops_for_program[op_id]
                dist_op_for_program.dist_attr = op_dist_attr_for_graph
580
        # TODO: the completion algorithm will skip orphan tensors,
581 582 583 584 585 586 587 588 589 590 591 592
        # here we just set there process_mesh to the first one.
        for orphan_node in self._serial_orphan_tensor_nodes:
            serial_tensor_id = orphan_node.var().id()
            dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id,
                                                             None)
            if dist_tensor:
                dist_tensor.dist_attr.process_mesh = self._process_meshes[0]
            else:
                serial_tensor_id = orphan_node.var().original_id()
                dist_tensor = self._dist_tensors_for_program.get(
                    serial_tensor_id, None)
                dist_tensor.dist_attr.process_mesh = self._process_meshes[0]
593 594 595 596 597

    def amend_dist_attr_for_program(self):
        for dist_tensor in self._dist_tensors_for_program.values():
            serial_tensor = dist_tensor.serial_tensor
            dist_attr = dist_tensor.dist_attr
598 599 600
            if serial_tensor.type == core.VarDesc.VarType.READER \
                or serial_tensor.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
                or serial_tensor.type == core.VarDesc.VarType.STEP_SCOPES:
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
                tensor_shape = []
            else:
                tensor_shape = serial_tensor.shape
            dims_mapping = dist_attr.dims_mapping
            process_mesh_shape = dist_attr.process_mesh.topology
            # If the dimension of tensor is less than the sharding dimension of process mesh,
            # we just amend the dimension mapping to -1. (Is this really OK?)
            for i in range(len(tensor_shape)):
                if dims_mapping[i] != -1 and tensor_shape[i] > 0 \
                    and process_mesh_shape[dims_mapping[i]] > tensor_shape[i]:
                    dims_mapping[i] = -1

        for dist_op in self._dist_ops_for_program.values():
            serial_op = dist_op.serial_op
            dist_attr = dist_op.dist_attr
            for arg_name in serial_op.input_arg_names:
                if dist_op.get_serial_input(arg_name) is None:
                    tensor_shape = []
                else:
                    if dist_op.get_serial_input(arg_name).type == core.VarDesc.VarType.READER \
621
                        or dist_op.get_serial_input(arg_name).type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
622 623 624 625 626 627 628 629 630 631 632 633 634
                        or dist_op.serial_op.type == "create_py_reader":
                        tensor_shape = []
                    else:
                        tensor_shape = dist_op.get_serial_input(arg_name).shape
                dims_mapping = dist_attr.get_input_dims_mapping(arg_name)
                process_mesh_shape = dist_attr.process_mesh.topology
                # If the dimension of tensor is less than the sharding dimension of process mesh,
                # we just amend the dimension mapping to -1. (Is this really OK?)
                for i in range(len(tensor_shape)):
                    if dims_mapping[i] != -1 and tensor_shape[i] > 0 \
                        and process_mesh_shape[dims_mapping[i]] > tensor_shape[i]:
                        dims_mapping[i] = -1
            for arg_name in serial_op.output_arg_names:
635 636 637
                if dist_op.get_serial_output(arg_name).type == core.VarDesc.VarType.READER \
                    or dist_op.get_serial_output(arg_name).type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
                    or dist_op.get_serial_output(arg_name).type == core.VarDesc.VarType.STEP_SCOPES:
638 639 640 641 642 643 644 645 646 647 648 649 650
                    tensor_shape = []
                else:
                    tensor_shape = dist_op.get_serial_output(arg_name).shape
                dims_mapping = dist_attr.get_output_dims_mapping(arg_name)
                process_mesh_shape = dist_attr.process_mesh.topology
                # If the dimension of tensor is less than the sharding dimension of process mesh,
                # we just amend the dimension mapping to -1. (Is this really OK?)
                for i in range(len(tensor_shape)):
                    if dims_mapping[i] != -1 and tensor_shape[i] > 0 \
                        and process_mesh_shape[dims_mapping[i]] > tensor_shape[i]:
                        dims_mapping[i] = -1

    def validate_dist_attr_for_program(self):
651
        if not self._is_initialized:
652 653
            assert False, \
                "Program must be initialized before validating its distributed attributes"
654
        for block in self.serial_main_program.blocks:
655 656
            for tensor in block.vars.values():
                dist_tensor = self.get_dist_tensor_for_program(tensor)
657 658 659
                assert dist_tensor is not None, \
                    "Tensor {} does not have a distributed attribute.".format(
                        dist_tensor.serial_tensor.name)
660 661 662 663 664 665
                if (dist_tensor is not None) and (
                        not dist_tensor.validate_dist_attr()):
                    assert False, "Tensor {} has a wrong distributed attributes {}.".format(
                        dist_tensor.serial_tensor.name, dist_tensor.dist_attr)
            for op in block.ops:
                dist_op = self.get_dist_op_for_program(op)
666 667 668
                assert dist_op is not None, \
                    "Operator {} does not have a distributed attribute.".format(
                        dist_op.serial_op.type)
669 670
                if (dist_op is not None) and (not dist_op.validate_dist_attr()):
                    assert False, "Operator {} has a wrong distributed attributes {}.".format(
671
                        dist_op.serial_op.type, dist_op.dist_attr)
672 673
        return True

Z
zhaoyingli 已提交
674 675 676 677 678
    def __deepcopy__(self, memo):
        cls = self.__class__
        result = cls.__new__(cls)
        memo[id(self)] = result
        for k, v in self.__dict__.items():
679 680 681 682 683 684
            if k in [
                "_original_serial_main_program", "_original_serial_startup_program", \
                "_serial_main_program", "_serial_startup_program", "_serial_graph", \
                "_dist_main_programs", "_dist_startup_programs", \
                "_serial_ordered_nodes", "_serial_ordered_tensor_nodes", \
                "_serial_ordered_op_nodes"]:
Z
zhaoyingli 已提交
685 686 687
                setattr(result, k, v)
            else:
                setattr(result, k, copy.deepcopy(v, memo))
688 689 690 691

        # update dist tensor's dist_context
        for key in result._dist_tensors_for_program.keys():
            result._dist_tensors_for_program[key]._dist_context = result
Z
zhaoyingli 已提交
692 693
        return result

694 695 696 697 698 699 700 701 702

class DistributedOperatorContext:
    """
    DistributedOperatorContext is used to create a dist op desc in Program.
    Every time to create a new dist op, the context should be updated for it accordingly.
    """

    def __init__(self):
        self._dst_main_program = None
703
        self._main_block = None
704
        self._dst_startup_program = None
705
        self._startup_block = None
706 707
        self._cur_src_op = None
        self._cur_dist_attr = None
708
        self.grad_op_id_to_op_id = {}
709
        self.grad_var_to_var = defaultdict(dict)
710
        self._work_block = None
711
        self.already_init_sync_vars = set()
712 713
        self.varname_mapping = None
        self.rank_id = None
714

Z
zhaoyingli 已提交
715 716 717 718 719
    def __deepcopy__(self, memo):
        cls = self.__class__
        result = cls.__new__(cls)
        memo[id(self)] = result
        for k, v in self.__dict__.items():
720 721 722 723
            if k in [
                    "_dst_main_program", "_dst_startup_program", "_cur_src_op",
                    "_work_block", "_main_block", "_startup_block"
            ]:
Z
zhaoyingli 已提交
724 725 726 727 728
                setattr(result, k, v)
            else:
                setattr(result, k, copy.deepcopy(v, memo))
        return result

729 730
    @property
    def dst_main_program(self):
731 732
        return self._dst_main_program

733 734 735 736
    @dst_main_program.setter
    def dst_main_program(self, prog):
        self._dst_main_program = prog
        self._main_block = prog.blocks[0]
737

738 739 740
    @property
    def main_block(self):
        return self._main_block
741

742 743 744
    @property
    def dst_startup_program(self):
        return self._dst_startup_program
745

746 747 748 749
    @dst_startup_program.setter
    def dst_startup_program(self, prog):
        self._dst_startup_program = prog
        self._startup_block = prog.blocks[0]
750

751 752 753
    @property
    def startup_block(self):
        return self._startup_block
754

755 756 757 758
    @property
    def work_block(self):
        assert self._work_block is not None
        return self._work_block
759

760 761 762 763
    @work_block.setter
    def work_block(self, block):
        assert block is not None
        self._work_block = block
764

765 766 767
    @property
    def cur_src_op(self):
        assert self._cur_src_op is not None
768 769
        return self._cur_src_op

770
    def prepare_context(self, src_op):
771

772
        self._cur_src_op = src_op
773 774 775 776 777 778

        # build input varname mapping
        kinputs = {}
        for input_name in src_op.desc.input_names():
            varnames = []
            for varname in src_op.desc.input(input_name):
779 780
                assert varname in self.varname_mapping
                varnames.append(self.varname_mapping[varname])
781 782 783 784 785 786 787
            kinputs[input_name] = varnames

        # build output varname mapping
        koutputs = {}
        for output_name in src_op.desc.output_names():
            varnames = []
            for varname in src_op.desc.output(output_name):
788 789
                assert varname in self.varname_mapping
                varnames.append(self.varname_mapping[varname])
790 791 792
            koutputs[output_name] = varnames

        return kinputs, koutputs
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836


class BlockState(object):
    def __init__(self):
        self.nblock = 0
        self.forward_indices = []
        self.backward_indices = []
        self.backward_to_forward_index_map = {}

    def parse_forward_blocks(self, program):

        while program.current_block_idx != 0:
            program._rollback()

        assert program.current_block_idx == 0

        for idx, block in enumerate(program.blocks):

            assert idx == block.idx, "index doesn't match"
            assert block.forward_block_idx == -1, "forward_block_idx of forward block [{}] is not [{}]".format(
                idx, block.forward_block_idx)
            self.forward_indices.append(idx)
            self.nblock += 1

        assert self.nblock >= 1

    def parse_backward_blocks(self, program):

        assert 0 in self.forward_indices, "forward block idx are{}".format(
            self.forward_indices)
        self.backward_to_forward_index_map[0] = 0

        for idx, block in enumerate(program.blocks):

            if idx < len(self.forward_indices):
                continue

            assert idx == block.idx, "index doesn't match"
            assert block.forward_block_idx in self.forward_indices
            self.backward_indices.append(idx)
            self.backward_to_forward_index_map[idx] = block.forward_block_idx
            self.nblock += 1

        assert self.nblock == len(program.blocks)