convolution_grad_kernel.cc 7.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/phi/kernels/sparse/convolution_grad_kernel.h"
16
#include "paddle/phi/core/visit_type.h"
17
#include "paddle/phi/kernels/copy_kernel.h"
18
#include "paddle/phi/kernels/funcs/blas/blas.h"
19
#include "paddle/phi/kernels/funcs/math_function.h"
20 21 22 23 24 25 26 27 28 29 30 31 32
#include "paddle/phi/kernels/sparse/cpu/convolution.h"

namespace phi {
namespace sparse {

// rulebook:
//[
//  [kernel_index],
//  [in_i],
//  [out_i],
//]
// x_grad = out_grad * transpose(kenrel)
// kernel_grad = transpose(x) * out_grad
33 34 35 36 37 38 39 40 41 42 43 44 45
template <typename T, typename IntT = int>
void Conv3dGradCPUKernel(const CPUContext& dev_ctx,
                         const SparseCooTensor& x,
                         const DenseTensor& kernel,
                         const DenseTensor& rulebook,
                         const SparseCooTensor& out_grad,
                         const std::vector<int>& paddings,
                         const std::vector<int>& dilations,
                         const std::vector<int>& strides,
                         const int groups,
                         const bool subm,
                         SparseCooTensor* x_grad,
                         DenseTensor* kernel_grad) {
46 47 48 49
  const auto& kernel_dims = kernel.dims();
  const int kernel_size = kernel_dims[0] * kernel_dims[1] * kernel_dims[2];
  const int in_channels = kernel_dims[3];
  const int out_channels = kernel_dims[4];
50
  const IntT* rulebook_ptr = rulebook.data<IntT>();
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

  const int rulebook_len = rulebook.dims()[1];

  DenseTensorMeta in_features_meta(
      x.dtype(), {rulebook_len, in_channels}, DataLayout::NCHW);
  DenseTensorMeta d_x_features_meta(
      x.dtype(), {rulebook_len, in_channels}, DataLayout::NCHW);
  DenseTensorMeta out_grad_features_meta(
      x.dtype(), {rulebook_len, out_channels}, DataLayout::NCHW);
  phi::DenseTensor in_features =
      phi::Empty(dev_ctx, std::move(in_features_meta));
  phi::DenseTensor d_x_features =
      phi::Empty(dev_ctx, std::move(d_x_features_meta));
  phi::DenseTensor out_grad_features =
      phi::Empty(dev_ctx, std::move(out_grad_features_meta));

  T* in_features_ptr = in_features.data<T>();
  T* d_x_features_ptr = d_x_features.data<T>();
  T* out_grad_features_ptr = out_grad_features.data<T>();
70
  *kernel_grad = phi::EmptyLike<T>(dev_ctx, kernel);
71
  T* d_kernel_ptr = kernel_grad->data<T>();
72
  memset(d_kernel_ptr, 0, sizeof(T) * kernel_grad->numel());
73

Z
zhangkaihuo 已提交
74
  int half_kernel_size = kernel_size / 2;
75
  auto blas = phi::funcs::GetBlas<CPUContext, T>(dev_ctx);
76
  DenseTensor x_grad_indices =
77
      phi::EmptyLike<IntT>(dev_ctx, x.non_zero_indices());
78 79 80
  DenseTensor x_grad_values = phi::EmptyLike<T>(dev_ctx, x.non_zero_elements());
  T* x_grad_values_ptr = x_grad_values.data<T>();
  memset(x_grad_values_ptr, 0, sizeof(T) * x_grad_values.numel());
Z
zhangkaihuo 已提交
81
  memset(d_x_features_ptr, 0, sizeof(T) * d_x_features.numel());
82 83 84 85 86
  phi::Copy<CPUContext>(dev_ctx,
                        x.non_zero_indices(),
                        dev_ctx.GetPlace(),
                        false,
                        &x_grad_indices);
87
  x_grad->SetMember(x_grad_indices, x_grad_values, x.dims(), true);
Z
zhangkaihuo 已提交
88

89
  std::vector<IntT> offsets(kernel_size + 1), counter(kernel_size, 0);
90 91 92
  for (int i = 0; i < rulebook_len; i++) {
    counter[rulebook_ptr[i]] += 1;
  }
93
  IntT offset = 0, max_count = 0;
94 95 96
  for (int i = 0; i < kernel_size; i++) {
    offsets[i] = offset;
    offset += counter[i];
Z
zhangkaihuo 已提交
97 98 99
    if (i < half_kernel_size) {
      max_count = std::max(max_count, counter[i]);
    }
100 101 102
  }
  offsets[kernel_size] = offset;

Z
zhangkaihuo 已提交
103
  if (subm) {
104 105 106 107 108 109 110 111 112 113
    phi::funcs::sparse::SubmPreProcess<T, CPUContext>(
        dev_ctx,
        x,
        kernel,
        out_grad.non_zero_elements(),
        in_channels,
        out_channels,
        half_kernel_size,
        kernel_grad,
        &x_grad_values);
Z
zhangkaihuo 已提交
114 115 116 117 118
    if (max_count == 0) {
      return;
    }
  }

119 120 121 122 123 124 125 126 127 128
  Gather<T, IntT>(x.non_zero_elements().data<T>(),
                  rulebook_ptr + rulebook_len,
                  rulebook_len,
                  in_channels,
                  in_features_ptr);
  Gather<T, IntT>(out_grad.non_zero_elements().data<T>(),
                  rulebook_ptr + rulebook_len * 2,
                  rulebook_len,
                  out_channels,
                  out_grad_features_ptr);
Z
zhangkaihuo 已提交
129

130 131
  const T* kernel_ptr = kernel.data<T>();
  for (int i = 0; i < kernel_size; i++) {
Z
zhangkaihuo 已提交
132
    if (counter[i] <= 0 || (subm && i == half_kernel_size)) {
133 134 135 136 137 138 139 140 141
      continue;
    }

    const int M = counter[i];
    const int K = in_channels;
    const int N = out_channels;
    T* tmp_in_ptr = in_features_ptr + offsets[i] * in_channels;
    T* tmp_out_grad_ptr = out_grad_features_ptr + offsets[i] * out_channels;
    const T* tmp_kernel_ptr = kernel_ptr + i * in_channels * out_channels;
142
    T* tmp_d_x_ptr = d_x_features_ptr + offsets[i] * in_channels;
143 144 145 146 147 148 149
    T* tmp_d_kernel_ptr = d_kernel_ptr + i * in_channels * out_channels;

    // call gemm: d_kernel = transpose(x) * out_grad
    // (in_channels, n) * (n, out_channels)
    blas.GEMM(CblasTrans,
              CblasNoTrans,
              K,
150 151
              N,
              M,
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
              static_cast<T>(1),
              tmp_in_ptr,
              tmp_out_grad_ptr,
              static_cast<T>(0),
              tmp_d_kernel_ptr);

    // call gemm: d_x = out_grad * transpose(kernel)
    // (n, out_channels) * (out_channels, in_channels)
    blas.GEMM(CblasNoTrans,
              CblasTrans,
              M,
              K,
              N,
              static_cast<T>(1),
              tmp_out_grad_ptr,
              tmp_kernel_ptr,
              static_cast<T>(0),
              tmp_d_x_ptr);
  }

  // 4. scatter
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
  Scatter<T, IntT>(d_x_features_ptr,
                   rulebook.data<IntT>() + rulebook_len,
                   rulebook_len,
                   in_channels,
                   x_grad_values_ptr);
}

template <typename T, typename Context>
void Conv3dGradKernel(const Context& dev_ctx,
                      const SparseCooTensor& x,
                      const DenseTensor& kernel,
                      const DenseTensor& rulebook,
                      const SparseCooTensor& out_grad,
                      const std::vector<int>& paddings,
                      const std::vector<int>& dilations,
                      const std::vector<int>& strides,
                      const int groups,
                      const bool subm,
                      SparseCooTensor* x_grad,
                      DenseTensor* kernel_grad) {
193
  PD_VISIT_INTEGRAL_TYPES(
194 195 196 197 198 199 200 201 202 203 204 205 206 207
      x.non_zero_indices().dtype(), "Conv3dGradCPUKernel", ([&] {
        Conv3dGradCPUKernel<T, data_t>(dev_ctx,
                                       x,
                                       kernel,
                                       rulebook,
                                       out_grad,
                                       paddings,
                                       dilations,
                                       strides,
                                       groups,
                                       subm,
                                       x_grad,
                                       kernel_grad);
      }));
208 209 210 211 212
}

}  // namespace sparse
}  // namespace phi

213
PD_REGISTER_KERNEL(sparse_conv3d_grad,
214 215 216 217 218 219 220
                   CPU,
                   ALL_LAYOUT,
                   phi::sparse::Conv3dGradKernel,
                   float,
                   double) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}