communicator.h 15.1 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <ThreadPool.h>
18
#include <atomic>
Q
Qiao Longfei 已提交
19
#include <deque>
20
#include <map>
Q
Qiao Longfei 已提交
21 22
#include <memory>
#include <string>
Q
Qiao Longfei 已提交
23
#include <unordered_map>
24
#include <unordered_set>
Q
Qiao Longfei 已提交
25
#include <utility>
Q
Qiao Longfei 已提交
26
#include <vector>
27
#include "gflags/gflags.h"
Q
Qiao Longfei 已提交
28 29 30

#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/variable.h"
C
Chengmo 已提交
31 32
#include "paddle/fluid/operators/distributed/distributed.h"
#include "paddle/fluid/operators/distributed/rpc_client.h"
Q
Qiao Longfei 已提交
33
#include "paddle/fluid/operators/distributed/rpc_common.h"
C
Chengmo 已提交
34
#include "paddle/fluid/operators/distributed_ops/send_recv_util.h"
Q
Qiao Longfei 已提交
35 36
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
Q
Qiao Longfei 已提交
37 38 39 40
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"

41 42
DECLARE_bool(communicator_is_sgd_optimizer);

Q
Qiao Longfei 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
namespace paddle {
namespace operators {
namespace distributed {

using Scope = framework::Scope;
using Variable = framework::Variable;

template <typename T>
class BlockingQueue {
 public:
  explicit BlockingQueue(size_t capacity) : capacity_(capacity) {
    PADDLE_ENFORCE_GT(capacity_, 0, "The capacity must be greater than 0.");
  }

  bool Push(const T& elem) {
Q
Qiao Longfei 已提交
58 59 60 61 62 63 64
    {
      std::unique_lock<std::mutex> lock(mutex_);
      cv_.wait(lock, [&] { return queue_.size() < capacity_; });
      PADDLE_ENFORCE_LT(queue_.size(), capacity_);
      queue_.push_back(elem);
    }
    cv_.notify_one();
Q
Qiao Longfei 已提交
65 66 67 68
    return true;
  }

  bool Push(T&& elem) {
Q
Qiao Longfei 已提交
69 70 71 72 73 74 75
    {
      std::unique_lock<std::mutex> lock(mutex_);
      cv_.wait(lock, [&] { return queue_.size() < capacity_; });
      PADDLE_ENFORCE_LT(queue_.size(), capacity_);
      queue_.emplace_back(std::move(elem));
    }
    cv_.notify_one();
Q
Qiao Longfei 已提交
76 77 78 79 80
    return true;
  }

  T Pop() {
    std::unique_lock<std::mutex> lock(mutex_);
Q
Qiao Longfei 已提交
81
    cv_.wait(lock, [=] { return !queue_.empty(); });
Q
Qiao Longfei 已提交
82 83
    T rc(std::move(queue_.front()));
    queue_.pop_front();
Q
Qiao Longfei 已提交
84
    cv_.notify_one();
Q
Qiao Longfei 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    return rc;
  }

  size_t Cap() const {
    std::lock_guard<std::mutex> lock(mutex_);
    return capacity_;
  }

  size_t Size() const {
    std::lock_guard<std::mutex> lock(mutex_);
    return queue_.size();
  }

 private:
  const size_t capacity_;
  std::deque<T> queue_;

  mutable std::mutex mutex_;
Q
Qiao Longfei 已提交
103
  std::condition_variable cv_;
Q
Qiao Longfei 已提交
104 105
};

Q
Qiao Longfei 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

inline void MergeVars(const std::string& var_name,
                      const std::vector<std::shared_ptr<Variable>>& vars,
                      Scope* scope) {
  PADDLE_ENFORCE(!vars.empty(), "should have value to merge!");
  auto cpu_place = platform::CPUPlace();
  auto& var0 = vars[0];
  auto* out_var = scope->Var(var_name);
  if (var0->IsType<framework::LoDTensor>()) {
    auto dims = var0->Get<framework::LoDTensor>().dims();
Q
Qiao Longfei 已提交
119
    VLOG(3) << "merge " << var_name << " LoDTensor dims " << dims;
Q
Qiao Longfei 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

    // init output tensor
    auto* out_t = out_var->GetMutable<framework::LoDTensor>();
    out_t->mutable_data<float>(dims, cpu_place);

    // check the input dims
    for (auto& var : vars) {
      auto& var_t = var->Get<framework::LoDTensor>();
      PADDLE_ENFORCE_EQ(var_t.dims(), dims, "should have the same dims");
    }

    // set output tensor to 0.
    auto cpu_ctx = paddle::platform::CPUDeviceContext();
    math::SetConstant<paddle::platform::CPUDeviceContext, float>
        constant_functor;
    constant_functor(cpu_ctx, out_t, static_cast<float>(0));

    // sum all vars to out
    auto result = EigenVector<float>::Flatten(*out_t);
    for (auto& var : vars) {
      auto& in_t = var->Get<framework::LoDTensor>();
      auto in = EigenVector<float>::Flatten(in_t);
      result.device(*cpu_ctx.eigen_device()) = result + in;
    }
144 145 146 147
    if (!FLAGS_communicator_is_sgd_optimizer) {
      result.device(*cpu_ctx.eigen_device()) =
          result / static_cast<float>(vars.size());
    }
Q
Qiao Longfei 已提交
148 149 150 151 152 153 154 155 156 157 158
  } else if (var0->IsType<framework::SelectedRows>()) {
    auto& slr0 = var0->Get<framework::SelectedRows>();
    auto* out_slr = out_var->GetMutable<framework::SelectedRows>();
    out_slr->mutable_rows()->clear();
    out_slr->mutable_value()->mutable_data<float>({{}}, cpu_place);
    std::vector<const paddle::framework::SelectedRows*> inputs;
    inputs.reserve(vars.size());
    for (auto& var : vars) {
      inputs.push_back(&var->Get<framework::SelectedRows>());
    }
    auto dev_ctx = paddle::platform::CPUDeviceContext();
159 160 161 162 163 164 165 166 167 168
    if (FLAGS_communicator_is_sgd_optimizer) {
      math::scatter::MergeAdd<paddle::platform::CPUDeviceContext, float>
          merge_add;
      merge_add(dev_ctx, inputs, out_slr);
    } else {
      math::scatter::MergeAverage<paddle::platform::CPUDeviceContext, float>
          merge_average;
      merge_average(dev_ctx, inputs, out_slr);
    }

Q
Qiao Longfei 已提交
169 170 171 172 173 174 175
    VLOG(3) << "merge " << var_name << " SelectedRows height: " << slr0.height()
            << " dims: " << slr0.value().dims();
  } else {
    PADDLE_THROW("unsupported var type!");
  }
}

Q
Qiao Longfei 已提交
176 177
using RpcCtxMap = std::unordered_map<std::string, RpcContext>;

Q
Qiao Longfei 已提交
178 179
class Communicator {
 public:
T
tangwei12 已提交
180 181
  Communicator() {}
  virtual ~Communicator() {}
Q
Qiao Longfei 已提交
182

T
tangwei12 已提交
183 184 185
  virtual void Start() = 0;
  virtual void Stop() = 0;
  virtual bool IsRunning() { return running_; }
Q
Qiao Longfei 已提交
186

T
tangwei12 已提交
187 188
  virtual void Send(const std::string& var_name,
                    const framework::Scope& scope) = 0;
189 190 191 192 193

  virtual void Send(const std::vector<std::string>& sparse_var_names,
                    const std::vector<std::string>& sparse_var_tables,
                    const framework::Scope& scope) = 0;

T
tangwei12 已提交
194
  virtual void Recv() = 0;
Q
Qiao Longfei 已提交
195

T
tangwei12 已提交
196 197 198
  virtual void InitImpl(const RpcCtxMap& send_varname_to_ctx,
                        const RpcCtxMap& recv_varname_to_ctx,
                        Scope* recv_scope) = 0;
199

T
tangwei12 已提交
200 201
  virtual void InitImpl(const paddle::framework::ProgramDesc& program,
                        Scope* recv_scope) = 0;
Q
Qiao Longfei 已提交
202

203 204 205 206 207 208 209
  // for geo-sgd
  virtual void InitImpl(
      const paddle::framework::ProgramDesc& program, Scope* param_scope,
      std::map<std::string, std::map<std::string, std::vector<std::string>>>&
          vars_info,
      const int& trainers, const int& geo_need_push_nums) = 0;

T
tangwei12 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
  static Communicator* GetInstance() { return communicator_.get(); }

  static std::shared_ptr<Communicator> GetInstantcePtr() {
    return communicator_;
  }

  template <typename T>
  static Communicator* InitInstance(const RpcCtxMap& send_varname_to_ctx,
                                    const RpcCtxMap& recv_varname_to_ctx,
                                    Scope* recv_scope) {
    std::call_once(init_flag_, &Communicator::InitWithRpcCtx<T>,
                   send_varname_to_ctx, recv_varname_to_ctx, recv_scope);
    return communicator_.get();
  }

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
  template <typename T>
  static Communicator* InitInstance(
      const paddle::framework::ProgramDesc& program, Scope* recv_scope) {
    std::call_once(init_flag_, &Communicator::InitWithProgram<T>, program,
                   recv_scope);
    return communicator_.get();
  }

  template <typename T>
  static Communicator* InitInstance(
      const paddle::framework::ProgramDesc& program, Scope* training_scope,
      std::map<std::string, std::map<std::string, std::vector<std::string>>>&
          vars_info,
      const int& trainers, const int& geo_need_push_nums) {
    std::call_once(init_flag_, &Communicator::InitWithTranspilerInfo<T>,
                   program, training_scope, std::ref(vars_info),
                   std::ref(trainers), std::ref(geo_need_push_nums));
    return communicator_.get();
  }

T
tangwei12 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
  // Init is called by InitInstance.
  template <typename T>
  static void InitWithRpcCtx(const RpcCtxMap& send_varname_to_ctx,
                             const RpcCtxMap& recv_varname_to_ctx,
                             Scope* recv_scope) {
    if (communicator_.get() == nullptr) {
      communicator_.reset(new T());
      communicator_->InitImpl(send_varname_to_ctx, recv_varname_to_ctx,
                              recv_scope);
    }
  }

  template <typename T>
  static void InitWithProgram(const paddle::framework::ProgramDesc& program,
                              Scope* recv_scope) {
    if (communicator_.get() == nullptr) {
      communicator_.reset(new T());
      communicator_->InitImpl(program, recv_scope);
    }
  }

266 267 268 269 270 271 272 273 274 275 276 277 278
  template <typename T>
  static void InitWithTranspilerInfo(
      const paddle::framework::ProgramDesc& program, Scope* training_scope,
      std::map<std::string, std::map<std::string, std::vector<std::string>>>&
          vars_info,
      const int& trainers, const int& geo_need_push_nums) {
    if (communicator_.get() == nullptr) {
      communicator_.reset(new T());
      communicator_->InitImpl(program, training_scope, std::ref(vars_info),
                              std::ref(trainers), std::ref(geo_need_push_nums));
    }
  }

T
tangwei12 已提交
279 280 281 282 283 284
 protected:
  bool running_ = false;
  static std::shared_ptr<Communicator> communicator_;
  static std::once_flag init_flag_;
};

285
using SparseIdsMap =
C
Chengmo 已提交
286
    std::unordered_map<std::string, std::vector<std::unordered_set<int64_t>>>;
287

T
tangwei12 已提交
288 289 290 291 292 293 294 295 296 297
class AsyncCommunicator : public Communicator {
 public:
  AsyncCommunicator() {}
  ~AsyncCommunicator();
  void Start() override;
  void Stop() override;

  void Send(const std::string& var_name,
            const framework::Scope& scope) override;
  void Recv() override;
Q
Qiao Longfei 已提交
298
  void RecvAll();
T
tangwei12 已提交
299 300 301 302 303 304 305 306

  void InitImpl(const RpcCtxMap& send_varname_to_ctx,
                const RpcCtxMap& recv_varname_to_ctx,
                Scope* recv_scope) override;

  void InitImpl(const paddle::framework::ProgramDesc& program,
                Scope* recv_scope) override;

Q
Qiao Longfei 已提交
307 308 309
  void SendThread();
  void RecvThread();

310 311 312 313 314 315 316 317 318 319
  void Send(const std::vector<std::string>& sparse_var_names,
            const std::vector<std::string>& sparse_var_tables,
            const framework::Scope& scope) override;

  void InitImpl(
      const paddle::framework::ProgramDesc& program, Scope* param_scope,
      std::map<std::string, std::map<std::string, std::vector<std::string>>>&
          vars_info,
      const int& trainers, const int& geo_need_push_nums) override;

T
tangwei12 已提交
320
 private:
Q
Qiao Longfei 已提交
321 322 323
  std::unordered_map<std::string,
                     std::shared_ptr<BlockingQueue<std::shared_ptr<Variable>>>>
      send_varname_to_queue_;
Q
Qiao Longfei 已提交
324 325
  RpcCtxMap send_varname_to_ctx_;
  RpcCtxMap recv_varname_to_ctx_;
326 327
  std::unique_ptr<std::thread> send_thread_{nullptr};
  std::unique_ptr<std::thread> recv_thread_{nullptr};
Q
Qiao Longfei 已提交
328 329
  Scope* recv_scope_;                  // should be global scope
  std::unique_ptr<Scope> send_scope_;  // an independent scope
Q
Qiao Longfei 已提交
330 331
  std::unique_ptr<::ThreadPool> send_threadpool_{nullptr};
  std::unique_ptr<::ThreadPool> recv_threadpool_{nullptr};
332
  std::atomic_uint grad_num_{0};  // the num of gradient sent since last recv
Q
Qiao Longfei 已提交
333 334
};

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
class GeoSgdCommunicator : public Communicator {
 public:
  GeoSgdCommunicator() {}
  ~GeoSgdCommunicator();
  void InitImpl(
      const paddle::framework::ProgramDesc& program, Scope* training_scope,
      std::map<std::string, std::map<std::string, std::vector<std::string>>>&
          vars_info,
      const int& trainers, const int& geo_need_push_nums) override;

  void Start() override;
  void Stop() override;

  void Send(const std::string& var_name,
            const framework::Scope& scope) override;

  void Send(const std::vector<std::string>& sparse_var_names,
            const std::vector<std::string>& sparse_var_tables,
            const framework::Scope& scope) override;

  void Recv() override;

  void InitImpl(const RpcCtxMap& send_varname_to_ctx,
                const RpcCtxMap& recv_varname_to_ctx,
                Scope* recv_scope) override;

  void InitImpl(const paddle::framework::ProgramDesc& program,
                Scope* recv_scope) override;

 private:
  void SendThread();
  std::unordered_set<int64_t> SparseIdsMerge(
      const std::vector<SparseIdsMap>& ids_send_vec,
C
Chengmo 已提交
368
      const std::string& var_name, const std::string& splited_var_name);
369 370 371

  void SendUpdateDenseVars(const std::string& var_name);
  void SendUpdateSparseVars(const std::string& var_name,
C
Chengmo 已提交
372
                            const std::string& splited_var_name,
373
                            const std::unordered_set<int64_t>& ids_table);
C
Chengmo 已提交
374 375 376 377

  void RecvUpdateDenseVars(const std::string& var_name);
  void RecvUpdateSparseVars(const std::string& var_name,
                            const std::string& splited_var_name);
378 379 380 381 382 383 384 385 386

  void GeoSgdDenseParamInit(framework::Scope* scope_x,
                            framework::Scope* scope_y,
                            const std::string var_name);

  void GeoSgdSparseParamInit(framework::Scope* scope_x,
                             framework::Scope* scope_y,
                             const std::string var_name);

C
Chengmo 已提交
387 388 389 390 391 392 393 394
  void RpcSend(const std::string& origin_var_name,
               const std::string& splited_var_name,
               const size_t& splited_var_index);

  void RpcRecv(const std::string& origin_var_name,
               const std::string& splited_var_name,
               const size_t& splited_var_index);

395 396 397 398 399 400 401 402 403 404 405 406 407
  const std::string VarToDeltaVar(const std::string var_name) {
    std::string delta_name = var_name;
    const std::string send_name = delta_name.append(".delta");
    return send_name;
  }

  const std::string DeltaVarToVar(const std::string var_name) {
    std::string origin_name = var_name;
    origin_name.erase(origin_name.find(".delta"), 6);
    const std::string param_name = origin_name;
    return param_name;
  }

C
Chengmo 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420 421
  size_t GetSplitedVarIndex(const std::string var_name,
                            const std::string splited_var_name) {
    size_t index = 0;
    for (size_t i = 0;
         i < send_varname_to_ctx_[var_name].splited_var_names.size(); i++) {
      if (send_varname_to_ctx_[var_name].splited_var_names[i] ==
          splited_var_name) {
        index = i;
        break;
      }
    }
    return index;
  }

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
 private:
  int trainer_nums_ = 1;
  int geo_need_push_nums_ = 100;
  bool is_geo_sgd_ = false;
  Scope* training_scope_;
  std::shared_ptr<Scope> delta_scope_;  // parameter local delta: recv - old
  std::shared_ptr<Scope>
      old_scope_;  // parameter local, storage the param after last recv
  std::shared_ptr<Scope> pserver_scope_;  // parameter on pserver,gloabl scope
  RpcCtxMap send_varname_to_ctx_;
  RpcCtxMap recv_varname_to_ctx_;
  std::unordered_map<std::string, bool>
      var_list_;  // if var is sparse, using selected rows, bool=true

  std::shared_ptr<BlockingQueue<std::shared_ptr<SparseIdsMap>>>
      need_push_queue_;
  std::vector<SparseIdsMap> ids_send_vec_;

C
Chengmo 已提交
440 441
  std::unordered_map<std::string, std::vector<int64_t>> absolute_section_;

442 443
  std::unique_ptr<::ThreadPool> send_threadpool_{nullptr};
  std::unique_ptr<std::thread> send_thread_{nullptr};
C
Chengmo 已提交
444 445

  size_t need_thread_nums_{0};
446 447
};

Q
Qiao Longfei 已提交
448 449 450
}  // namespace distributed
}  // namespace operators
}  // namespace paddle