layer.cc 18.8 KB
Newer Older
J
Jiabin Yang 已提交
1
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/layer.h"
16

17
#include "paddle/fluid/framework/op_registry.h"
J
Jiabin Yang 已提交
18
#include "paddle/fluid/framework/variable_helper.h"
19 20
#include "paddle/fluid/imperative/infer_var_type_context.h"
#include "paddle/fluid/imperative/op_base.h"
J
Jiabin Yang 已提交
21 22
#include "paddle/fluid/imperative/prepared_operator.h"
#include "paddle/fluid/operators/math/math_function.h"
M
minqiyang 已提交
23
#include "paddle/fluid/platform/device_context.h"
J
Jiabin Yang 已提交
24
#include "paddle/fluid/platform/enforce.h"
C
chengduo 已提交
25
#include "paddle/fluid/platform/profiler.h"
26 27 28 29 30
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

DECLARE_bool(use_mkldnn);
31 32 33 34

namespace paddle {
namespace imperative {

J
Jiabin Yang 已提交
35
using framework::Variable;
Z
Zeng Jinle 已提交
36 37 38 39 40 41 42 43
void ThreadSafeNameSet::Insert(const std::string& name) {
  std::lock_guard<std::mutex> guard(mtx_);
  set_.insert(name);
}

void ThreadSafeNameSet::Remove(const std::string& name) {
  std::lock_guard<std::mutex> guard(mtx_);
  auto iter = set_.find(name);
44 45 46
  PADDLE_ENFORCE_EQ(
      iter != set_.end(), true,
      platform::errors::NotFound("Variable name %s does not exist", name));
Z
Zeng Jinle 已提交
47 48 49 50 51 52 53 54 55 56 57 58
  set_.erase(iter);
}

std::vector<std::string> ThreadSafeNameSet::Names() const {
  std::lock_guard<std::mutex> guard(mtx_);
  return std::vector<std::string>(set_.begin(), set_.end());
}

ThreadSafeNameSet VarBase::name_set_;

std::vector<std::string> VarBase::AliveVarNames() { return name_set_.Names(); }

J
Jiabin Yang 已提交
59 60 61 62 63 64 65 66 67
static framework::RuntimeContext PrepareRuntimeContext(
    const NameVarBaseMap& ins, const NameVarBaseMap& outs) {
  framework::VariableValueMap inputs, outputs;
  for (auto& in_pair : ins) {
    auto& in_ctx = inputs[in_pair.first];
    in_ctx.reserve(in_pair.second.size());
    for (auto& in_var : in_pair.second) {
      in_ctx.emplace_back(in_var->MutableVar());
    }
M
minqiyang 已提交
68 69
  }

J
Jiabin Yang 已提交
70 71 72 73 74
  for (auto& out_pair : outs) {
    auto& out_ctx = outputs[out_pair.first];
    out_ctx.reserve(out_pair.second.size());
    for (auto& out_var : out_pair.second) {
      out_ctx.emplace_back(out_var->MutableVar());
75
    }
J
Jiabin Yang 已提交
76 77 78 79
  }
  return framework::RuntimeContext(std::move(inputs), std::move(outputs));
}

80
template <typename VarType>
J
Jiabin Yang 已提交
81 82
static std::string DebugString(
    const std::string& name,
83
    const std::vector<std::shared_ptr<VarType>>& vars) {
J
Jiabin Yang 已提交
84 85
  std::stringstream ss;
  ss << name << "{";
M
minqiyang 已提交
86

J
Jiabin Yang 已提交
87 88
  for (size_t i = 0; i < vars.size(); ++i) {
    if (i > 0) ss << ", ";
M
minqiyang 已提交
89

J
Jiabin Yang 已提交
90 91 92 93 94
    if (vars[i] == nullptr) {
      ss << "NULL";
      continue;
    }
    ss << vars[i]->Name() << "[";
95
    const framework::Variable& var = vars[i]->Var();
J
Jiabin Yang 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108
    if (!var.IsInitialized()) {
      ss << "NOT_INITED_VAR";
    } else if (var.IsType<framework::LoDTensor>()) {
      auto& tensor = var.Get<framework::LoDTensor>();
      ss << "LoDTensor<";
      if (tensor.IsInitialized()) {
        ss << framework::DataTypeToString(tensor.type()) << ", ";
        ss << tensor.place() << ", ";
        ss << "(" << tensor.dims() << ")";
      } else {
        ss << "NOT_INITED";
      }
      ss << ">";
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    } else if (var.IsType<framework::SelectedRows>()) {
      ss << "SelectedRows<";
      auto& selected_rows = var.Get<framework::SelectedRows>();
      auto& tensor = selected_rows.value();
      auto& rows = selected_rows.rows();
      if (tensor.IsInitialized()) {
        ss << framework::DataTypeToString(tensor.type()) << ", ";
        ss << tensor.place() << ", ";
        ss << "height(" << selected_rows.height() << "), rows(";
        std::for_each(rows.cbegin(), rows.cend(),
                      [&ss](const int64_t r) { ss << r << " "; });
        ss << "), dims(" << tensor.dims() << ")";
      } else {
        ss << "NOT_INITED";
      }
      ss << ">";
J
Jiabin Yang 已提交
125 126 127 128
    } else {
      ss << "UNRESOLVED_TYPE";
    }
    ss << "]";
129
  }
130

J
Jiabin Yang 已提交
131 132
  ss << "}";
  return ss.str();
133 134
}

135 136 137 138
template <typename VarType>
static std::string LayerDebugStringImpl(const std::string& op_type,
                                        const NameVarMap<VarType>& ins,
                                        const NameVarMap<VarType>& outs) {
J
Jiabin Yang 已提交
139 140 141 142 143 144 145 146
  std::stringstream ss;
  ss << "Op(" << op_type << "): ";

  ss << "Inputs: ";

  size_t i = 0;
  for (auto& pair : ins) {
    if (i > 0) ss << ", ";
147
    ss << DebugString<VarType>(pair.first, pair.second);
J
Jiabin Yang 已提交
148
    ++i;
149 150
  }

J
Jiabin Yang 已提交
151 152 153 154
  ss << ",   Outputs: ";
  i = 0;
  for (auto& pair : outs) {
    if (i > 0) ss << ", ";
155
    ss << DebugString<VarType>(pair.first, pair.second);
J
Jiabin Yang 已提交
156 157 158 159
    ++i;
  }
  return ss.str();
}
160

161 162 163 164 165 166 167 168 169 170
std::string LayerDebugString(const std::string& op_type,
                             const NameVarMap<VarBase>& ins,
                             const NameVarMap<VarBase>& outs) {
  return LayerDebugStringImpl<VarBase>(op_type, ins, outs);
}

std::string LayerDebugString(const std::string& op_type,
                             const NameVarMap<VariableWrapper>& ins,
                             const NameVarMap<VariableWrapper>& outs) {
  return LayerDebugStringImpl<VariableWrapper>(op_type, ins, outs);
J
Jiabin Yang 已提交
171
}
172

173
VarBase::VarBase(const std::shared_ptr<VariableWrapper>& var)
174
    : var_(var), grad_node_(var->GetGradNode()) {
175 176
  if (auto grad_var = var_->GetGradVar()) {
    grad_var_ = std::make_shared<VarBase>(grad_var);
177 178 179 180 181 182 183 184 185 186 187 188
  }

  if (IsDebugEnabled()) {
    VLOG(10) << "Construct VarBase: " << Name();
    name_set_.Insert(Name());
  }
}

size_t VarBase::GradOpNum() const {
  return grad_node_ ? grad_node_->size() : 0;
}

J
Jiabin Yang 已提交
189
void VarBase::ClearGradient() {
190
  VLOG(4) << "ClearGradient " << Name();
J
Jiabin Yang 已提交
191
  if (grad_var_) {
192 193 194
    if (grad_var_->Var().IsType<framework::SelectedRows>()) {
      auto* grad_t =
          grad_var_->MutableVar()->GetMutable<framework::SelectedRows>();
195
      if (grad_t->mutable_value()->IsInitialized()) {
196 197 198
#ifdef PADDLE_WITH_MKLDNN
        if (FLAGS_use_mkldnn) ClearMKLDNNCache(grad_t->place());
#endif
199 200 201 202
        grad_t->mutable_rows()->clear();
        grad_t->mutable_value()->clear();
      }
    } else {
203
      platform::RecordEvent record_event("ClearGradient");
204 205
      auto* grad_t =
          grad_var_->MutableVar()->GetMutable<framework::LoDTensor>();
206 207 208 209
      if (grad_t->IsInitialized()) {
        auto* dev_ctx =
            platform::DeviceContextPool::Instance().Get(grad_t->place());
        operators::math::set_constant(*dev_ctx, grad_t, 0.0);
210 211 212
#ifdef PADDLE_WITH_MKLDNN
        if (FLAGS_use_mkldnn) ClearMKLDNNCache(grad_t->place());
#endif
213
      }
214
    }
215 216 217 218
    // TODO(zhouwei): It's better to free memory of grad by grad_t->claer.
    // But will have some bug on mac CPU of yolov3 model, why?
    // After fix this bug, function SetIsEmpty() isn't need
    grad_var_->SharedVar()->SetIsEmpty(true);
219
  }
J
Jiabin Yang 已提交
220
}
221

J
Jiabin Yang 已提交
222
std::shared_ptr<VarBase> VarBase::NewVarBase(const platform::Place& dst_place,
M
minqiyang 已提交
223
                                             const bool blocking) const {
224
  PADDLE_ENFORCE_EQ(
225 226
      Var().IsInitialized() && (Var().IsType<framework::LoDTensor>() ||
                                Var().IsType<framework::SelectedRows>()),
227 228 229
      true, platform::errors::InvalidArgument(
                "Variable is not initialized or Variable's type is not "
                "LoDTensor or SelectedRows when getting numpy tensor"));
230

231 232
  if (Var().IsType<framework::LoDTensor>()) {
    auto& src_tensor = Var().Get<framework::LoDTensor>();
233 234
    // TODO(Jiabin): change this after move unique_name generator to CXX
    auto new_var = std::make_shared<VarBase>(
235
        true, Name() + std::to_string(copied_counter_++));
236

237 238
    auto* dst_tensor =
        new_var->MutableVar()->GetMutable<framework::LoDTensor>();
239
    dst_tensor->set_lod(src_tensor.lod());
240 241 242
    new_var->SetPersistable(Persistable());
    new_var->SetDataType(DataType());
    new_var->SetType(Type());
243 244 245 246 247 248 249
    framework::TensorCopy(src_tensor, dst_place, dst_tensor);
    if (blocking) {
      platform::DeviceContextPool::Instance().Get(dst_place)->Wait();
      auto src_place = src_tensor.place();
      if (!(src_place == dst_place)) {
        platform::DeviceContextPool::Instance().Get(src_place)->Wait();
      }
250
    }
251 252
    VLOG(4) << "copy tensor " << Name() << " from " << Place() << " to "
            << dst_place;
253 254
    return new_var;
  } else {
255
    auto& src_selected_rows = Var().Get<framework::SelectedRows>();
256 257 258 259
    auto new_var = std::make_shared<VarBase>(
        false, "Itmp" + std::to_string(copied_counter_++));
    new_var->SetType(framework::proto::VarType::SELECTED_ROWS);
    auto* dst_selected_rows =
260
        new_var->MutableVar()->GetMutable<framework::SelectedRows>();
261 262 263 264 265 266 267 268 269 270 271 272

    framework::TensorCopy(src_selected_rows.value(), dst_place,
                          dst_selected_rows->mutable_value());
    if (blocking) {
      platform::DeviceContextPool::Instance().Get(dst_place)->Wait();
      auto src_place = src_selected_rows.place();
      if (!(src_place == dst_place)) {
        platform::DeviceContextPool::Instance().Get(src_place)->Wait();
      }
    }
    dst_selected_rows->set_height(src_selected_rows.height());
    dst_selected_rows->set_rows(src_selected_rows.rows());
273 274
    VLOG(4) << "copy tensor " << Name() << " from " << Place() << " to "
            << dst_place;
275 276
    return new_var;
  }
M
minqiyang 已提交
277 278
}

279
void VarBase::CopyFrom(const VarBase& src, const bool blocking) {
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
  if (src.SharedVar()->IsEmpty()) {
    return;
  }

  VLOG(3) << "Deep copy Tensor from " << src.Name() << " to " << Name();
  if (Var().IsInitialized()) {
    PADDLE_ENFORCE_EQ(DataType(), src.DataType(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different data type with Tensor %s, "
                          "Tensor Copy cannot be performed!",
                          Name(), src.Name()));
    PADDLE_ENFORCE_EQ(Type(), src.Type(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different type with Tensor %s, Tensor "
                          "Copy cannot be performed!",
                          Name(), src.Name()));
  } else {
297 298
    SetDataType(src.DataType());
    SetType(src.Type());
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
    SetPersistable(src.Persistable());
    InnerSetOverridedStopGradient(src.OverridedStopGradient());
  }

  platform::Place place = src.Place();
  if (src.Var().IsType<framework::LoDTensor>()) {
    auto& src_tensor = src.Var().Get<framework::LoDTensor>();
    auto* dst_tensor = MutableVar()->GetMutable<framework::LoDTensor>();
    if (dst_tensor && dst_tensor->IsInitialized()) {
      PADDLE_ENFORCE_EQ(dst_tensor->dims(), src_tensor.dims(),
                        platform::errors::PreconditionNotMet(
                            "Tensor %s has different dims with Tensor %s, "
                            "Tensor Copy cannot be performed!",
                            Name(), src.Name()));
      PADDLE_ENFORCE_EQ(dst_tensor->lod(), src_tensor.lod(),
                        platform::errors::PreconditionNotMet(
                            "Tensor %s has different dims with Tensor %s, "
                            "Tensor Copy cannot be performed!",
                            Name(), src.Name()));
      place = Place();
    } else {
      dst_tensor->set_lod(src_tensor.lod());
      dst_tensor->Resize(src_tensor.dims());
    }
    framework::TensorCopy(src_tensor, place, dst_tensor);
  } else if (src.Var().IsType<framework::SelectedRows>()) {
    auto& src_selected_rows = src.Var().Get<framework::SelectedRows>();
    auto* dst_selected_rows =
        MutableVar()->GetMutable<framework::SelectedRows>();
    dst_selected_rows->set_height(src_selected_rows.height());
    dst_selected_rows->set_rows(src_selected_rows.rows());

    auto& src_tensor = src_selected_rows.value();
    auto* dst_tensor = dst_selected_rows->mutable_value();
    if (dst_tensor && dst_tensor->IsInitialized()) {
      PADDLE_ENFORCE_EQ(dst_tensor->dims(), src_tensor.dims(),
                        platform::errors::PreconditionNotMet(
                            "Tensor %s has different dims with Tensor %s, "
                            "Tensor Copy cannot be performed!",
                            Name(), src.Name()));
      place = Place();
    } else {
      dst_tensor->Resize(src_tensor.dims());
342
    }
343 344 345 346
    framework::TensorCopy(src_tensor, place, dst_tensor);
  }
  if (blocking) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
347 348 349
  }
}

350 351 352 353 354 355 356 357 358
void VarBase::BumpInplaceVersion() {
  PADDLE_ENFORCE_EQ(
      Var().IsInitialized(), true,
      platform::errors::InvalidArgument(
          "Tensor %s has not been initialized, please check if it has no data.",
          Name()));
  MutableVar()->BumpInplaceVersion();
}

359 360
pten::KernelContext OpBase::pt_kernel_context_;

361
void OpBase::SetType(const std::string& type) {
H
hong 已提交
362
  op_ = framework::OpRegistry::CreateOp(type, {}, {}, {}, false);
J
Jiabin Yang 已提交
363
}
364

365 366 367
void OpBase::ClearBackwardTrace() {
  ins_.clear();
  outs_.clear();
H
hong 已提交
368 369
}

370 371 372 373 374
template <typename VarType>
static void OpBaseRunImpl(const framework::OperatorBase& op,
                          const NameVarMap<VarType>& ins,
                          const NameVarMap<VarType>& outs,
                          const framework::AttributeMap& attrs,
375
                          const framework::AttributeMap& default_attrs,
376 377
                          const platform::Place& place,
                          pten::KernelContext* pt_kernel_context) {
378
  auto* op_kernel = dynamic_cast<const framework::OperatorWithKernel*>(&op);
379 380 381
  PADDLE_ENFORCE_NOT_NULL(
      op_kernel, platform::errors::PermissionDenied(
                     "Only support operator with kernel in Dygraph mode."));
382
  auto& info = op.Info();
J
Jiabin Yang 已提交
383
  if (info.infer_var_type_) {
384 385
    RuntimeInferVarTypeContext<VarType> infer_var_type_ctx(ins, outs, attrs,
                                                           default_attrs);
J
Jiabin Yang 已提交
386
    info.infer_var_type_(&infer_var_type_ctx);
X
Xin Pan 已提交
387
  }
388

J
Jiabin Yang 已提交
389 390 391
  // Initialize output var type
  for (auto& var_pair : outs) {
    for (auto& var : var_pair.second) {
392 393 394
      if (var) {
        InitializeVariable(var->MutableVar(), var->Type());
      }
395 396
    }
  }
X
Xin Pan 已提交
397

398
  VLOG(5) << LayerDebugString(op.Type(), ins, outs);
399

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
  /**
   * [ Why need temporary inputs here? ]
   *
   * PrepareData should not change original input tensor inplace.
   * Suppose the user defines a tensor(int), enters an op to execute,
   * and then this op rewrites GetExpectedKernelForVar, and converts
   * this tensor to float type during execution. After the dynamic
   * graph is executed, the user-defined variable will be lost, and
   * the user cannot get the originally defined int tensor, because
   * it has been converted to float, this should be regarded as a bug
   * in certain usage scenarios
   *
   * In static graph mode, when op is executed, a temporary scope
   * `transfer_scope` is created before PrepareData, the data after
   * transform is stored in the temporary scope, and then discarded
   * after the execution of op, but the original input is directly
   * overwritten in the previous dynamic graph implemention.
   */
418 419
  auto prepared_op = PreparedOp::Prepare(ins, outs, *op_kernel, place, attrs,
                                         default_attrs, pt_kernel_context);
420 421 422
  auto tmp_ins_ptr =
      PrepareData<VarType>(*op_kernel, ins, prepared_op.kernel_type());
  if (tmp_ins_ptr == nullptr) {
423
    prepared_op.Run(ins, outs, attrs, default_attrs);
424
  } else {
425
    prepared_op.Run(*tmp_ins_ptr, outs, attrs, default_attrs);
426
  }
427

428
  VLOG(4) << LayerDebugString(op.Type(), ins, outs);
429 430 431 432 433 434 435 436 437 438

  // set the output var
  for (auto& var_pair : outs) {
    for (auto& var : var_pair.second) {
      // NOTE(zhiqu): The ouput may be NULL because of pruning.
      if (var) {
        SetForwardDataTypeOfGradVar(var);
      }
    }
  }
439 440
}

441 442 443 444
void OpBase::Run(const framework::OperatorBase& op,
                 const NameVarMap<VarBase>& ins,
                 const NameVarMap<VarBase>& outs,
                 const framework::AttributeMap& attrs,
445
                 const framework::AttributeMap& default_attrs,
446
                 const platform::Place& place) {
447 448
  OpBaseRunImpl<VarBase>(op, ins, outs, attrs, default_attrs, place,
                         &pt_kernel_context_);
449 450 451 452 453 454
}

void OpBase::Run(const framework::OperatorBase& op,
                 const NameVarMap<VariableWrapper>& ins,
                 const NameVarMap<VariableWrapper>& outs,
                 const framework::AttributeMap& attrs,
455
                 const framework::AttributeMap& default_attrs,
456
                 const platform::Place& place) {
457 458
  OpBaseRunImpl<VariableWrapper>(op, ins, outs, attrs, default_attrs, place,
                                 &pt_kernel_context_);
459 460
}

461
void ClearNoNeedBufferInputs(OpBase* op) {
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
  auto& inferer = op->Info().NoNeedBufferVarsInferer();
  if (!inferer) return;
  auto* ins = op->GetMutableInsMap();
  const auto& no_need_buffer_slots =
      inferer(*ins, op->GetOutsMap(), op->Attrs());
  if (no_need_buffer_slots.empty()) return;

  for (auto& slot : no_need_buffer_slots) {
    auto iter = ins->find(slot);
    if (iter == ins->end()) continue;
    VLOG(2) << "Clear data buffer of " << slot << " in " << op->Type();

    PADDLE_ENFORCE_EQ(
        iter->second.IsGrad(), false,
        platform::errors::InvalidArgument(
            "Only forward variable buffers can be clear, this may be a bug"));

    for (auto& each_var : *(iter->second.MutableVarList())) {
      if (!each_var) continue;

      auto& var = each_var->Var();
      PADDLE_ENFORCE_EQ(var.IsType<framework::LoDTensor>(), true,
                        platform::errors::PermissionDenied(
                            "NoNeedBufferVars only support LoDTensor"));
      auto new_var = new VariableWrapper(each_var->Name());
      auto* new_tensor =
          new_var->MutableVar()->GetMutable<framework::LoDTensor>();
      auto& old_tensor = var.Get<framework::LoDTensor>();
      new_tensor->Resize(old_tensor.dims());
      new_tensor->set_lod(old_tensor.lod());
      each_var.reset(new_var);
    }
  }
}

std::shared_ptr<GradOpNode> CreateGradOpNode(
    const framework::OperatorBase& op, const NameVarBaseMap& ins,
    const NameVarBaseMap& outs, const framework::AttributeMap& attrs,
500
    const framework::AttributeMap& default_attrs, const platform::Place& place,
501
    const std::map<std::string, std::string>& inplace_map) {
502 503 504 505 506
  const auto& info = op.Info();
  if (!info.dygraph_grad_op_maker_) {
    return nullptr;
  }

507 508
  auto grad_node = info.dygraph_grad_op_maker_(op.Type(), ins, outs, attrs,
                                               default_attrs, inplace_map);
509
  if (grad_node && !grad_node->empty()) {
510 511 512 513
    for (auto& grad_op : *grad_node) {
      grad_op.SetId(OpBase::GenerateUniqueId());
      grad_op.SetPlace(place);
      ClearNoNeedBufferInputs(&grad_op);
514 515 516 517 518 519 520
    }
    return grad_node;
  } else {
    return nullptr;
  }
}

521 522
}  // namespace imperative
}  // namespace paddle