param_attr.py 11.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
F
fengjiayi 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
F
fengjiayi 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
F
update  
fengjiayi 已提交
14

15 16
from __future__ import print_function

17
import six
18
import warnings
19
import sys
20

21 22
from .initializer import Initializer, Xavier, Constant
from .regularizer import WeightDecayRegularizer
23
from paddle.fluid.data_feeder import check_type
Y
Yu Yang 已提交
24

25 26 27 28
__all__ = [
    'ParamAttr',
    'WeightNormParamAttr',
]
Y
Yu Yang 已提交
29

Y
Yu Yang 已提交
30 31

class ParamAttr(object):
C
chengduoZH 已提交
32
    """
Z
Zeng Jinle 已提交
33 34 35
    Create a object to represent the attribute of parameter. The attributes are:
    name, initializer, learning rate, regularizer, trainable, gradient clip,
    and model average.
36 37 38
    
    Note:
        ``gradient_clip`` of ``ParamAttr`` HAS BEEN DEPRECATED since 2.0. 
39
        It is recommended to set ``grad_clip`` in ``optimizer`` to clip gradient. 
40 41
        There are three clipping strategies: :ref:`api_fluid_clip_GradientClipByGlobalNorm` , 
        :ref:`api_fluid_clip_GradientClipByNorm` , :ref:`api_fluid_clip_GradientClipByValue` .
Z
Zeng Jinle 已提交
42 43 44 45 46 47 48 49 50 51

    Parameters:
        name (str, optional): The parameter's name. Default None, meaning that the name
                would be created automatically.
        initializer (Initializer, optional): The method to initial this parameter. Default
                None, meaning that the weight parameter is initialized by Xavier initializer,
                and the bias parameter is initialized by 0.
        learning_rate (float): The parameter's learning rate. The learning rate when
                optimize is the global learning rates times the parameter's learning rate times
                the factor of learning rate scheduler. Default 1.0.
52 53 54 55 56
        regularizer (WeightDecayRegularizer, optional): Regularization strategy. There are two method: 
                :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If 
                regularizer is also set in ``optimizer`` (such as :ref:`api_fluid_optimizer_SGDOptimizer` ), 
                that regularizer setting in optimizer will be ignored. Default None, meaning there is 
                no regularization.
Z
Zeng Jinle 已提交
57 58 59
        trainable (bool): Whether this parameter is trainable. Default True.
        do_model_average (bool): Whether this parameter should do model average
                when model average is enabled. Default False.
C
chengduoZH 已提交
60 61 62 63

    Examples:
        .. code-block:: python

J
jiweibo 已提交
64
            import paddle
Z
Zeng Jinle 已提交
65

J
jiweibo 已提交
66 67 68 69
            w_param_attrs = paddle.ParamAttr(name="fc_weight",
                                             learning_rate=0.5,
                                             regularizer=paddle.regularizer.L2Decay(1.0),
                                             trainable=True)
Z
Zeng Jinle 已提交
70
            print(w_param_attrs.name) # "fc_weight"
J
jiweibo 已提交
71
            paddle.enable_static()
J
jiweibo 已提交
72
            x = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
J
jiweibo 已提交
73
            y_predict = paddle.static.nn.fc(input=x, size=10, param_attr=w_param_attrs)
C
chengduoZH 已提交
74 75
    """

Y
Yu Yang 已提交
76 77 78 79 80
    def __init__(self,
                 name=None,
                 initializer=None,
                 learning_rate=1.0,
                 regularizer=None,
Y
Yu Yang 已提交
81
                 trainable=True,
82
                 do_model_average=True):
83 84 85 86 87 88 89 90 91

        if sys.version_info.major == 2:
            check_type(name, "name", (str, type(None), unicode), "ParamAttr")
        else:
            check_type(name, "name", (str, type(None)), "ParamAttr")
        check_type(learning_rate, "learning_rate", (float, int), "ParamAttr")
        check_type(trainable, "trainable", (bool), "ParamAttr")
        check_type(do_model_average, "do_model_average", (bool), "ParamAttr")

Y
Yu Yang 已提交
92
        self.name = name
93
        if self.name == "":
H
hong 已提交
94 95
            raise ValueError("name of ParamAttr can not be empty str")

Y
Yu Yang 已提交
96 97 98 99
        self.initializer = initializer
        self.learning_rate = learning_rate
        self.regularizer = regularizer
        self.trainable = trainable
100
        self.do_model_average = do_model_average
Y
Yu Yang 已提交
101

Y
yuyang18 已提交
102
    def _set_default_initializer(self, initializer):
C
chengduoZH 已提交
103 104 105
        """
        Set the default initializer, the initializer should be Constant,
        Uniform, Normal, Xavier, MSRA.
C
chengduoZH 已提交
106 107 108 109 110 111

        Args:
            initializer(Initializer): the initializer to set.

        Returns:
            None
C
chengduoZH 已提交
112
        """
Y
Yu Yang 已提交
113 114 115 116 117 118 119 120 121 122
        if initializer is None:
            if self.initializer is None:
                raise ValueError("ParamAttr.initializer is not set")
            return

        if self.initializer is not None:
            return

        self.initializer = initializer

Y
yuyang18 已提交
123
    def _set_default_param_initializer(self):
C
chengduoZH 已提交
124 125
        """
        Set the default initializer for the parameter with Xavier.
C
chengduoZH 已提交
126 127 128 129 130 131

        Args:
            None.

        Returns:
            None.
C
chengduoZH 已提交
132
        """
Y
yuyang18 已提交
133
        self._set_default_initializer(Xavier())
Y
Yu Yang 已提交
134

Y
yuyang18 已提交
135
    def _set_default_bias_initializer(self):
C
chengduoZH 已提交
136 137
        """
        Set the default initializer for the bias with Constant(0.0).
C
chengduoZH 已提交
138 139 140 141 142 143

        Args:
            None.

        Returns:
            None.
C
chengduoZH 已提交
144
        """
Y
yuyang18 已提交
145
        self._set_default_initializer(Constant(0.0))
Y
Yu Yang 已提交
146 147

    @staticmethod
Y
yuyang18 已提交
148
    def _to_attr(arg):
C
chengduoZH 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162
        """
        Create ParamAttr[s].

        Args:
            arg: Arguments to initialize ParamAttr[s]. arg's type can be
                str, Initializer, float, WeightDecayRegularizer, BaseGradientClipAttr,
                bool, ParamAttr, or a list of above type.

        Returns:
            ParamAttr[s]: ParamAttr[s] initialized with arg.

        Raises:
            arg can not initialize a ParamAttr.
        """
Y
Yu Yang 已提交
163 164
        if arg is None:
            return ParamAttr()
165
        elif isinstance(arg, list) or isinstance(arg, tuple):
Y
yuyang18 已提交
166
            return [ParamAttr._to_attr(a) for a in arg]
Y
Yu Yang 已提交
167 168
        elif isinstance(arg, ParamAttr):
            return arg
169
        elif isinstance(arg, six.string_types):
Y
Yu Yang 已提交
170 171 172 173 174 175
            return ParamAttr(name=arg)
        elif isinstance(arg, Initializer):
            return ParamAttr(initializer=arg)
        elif isinstance(arg, WeightDecayRegularizer):
            return ParamAttr(regularizer=arg)
        elif isinstance(arg, bool):
Y
yuyang18 已提交
176
            return ParamAttr._to_attr(None) if arg else False
Y
Yu Yang 已提交
177 178 179
        else:
            raise TypeError("{0} cast to ParamAttr".format(type(arg)))

Y
yuyang18 已提交
180
    def _to_kwargs(self, with_initializer=False):
C
chengduoZH 已提交
181 182 183 184 185 186 187 188 189
        """
        Returns the attributes of this parameter.

        Args:
            with_initializer(bool): Whether to add initializer attr.

        Returns:
            Parameter attributes(map): The attributes of this parameter.
        """
Y
Yu Yang 已提交
190 191
        kwargs = {
            'name': self.name,
G
guosheng 已提交
192 193 194
            'optimize_attr': {
                'learning_rate': self.learning_rate
            },
Y
Yu Yang 已提交
195
            'regularizer': self.regularizer,
Y
Yu Yang 已提交
196
            'trainable': self.trainable,
197
            'do_model_average': self.do_model_average
Y
Yu Yang 已提交
198 199 200 201
        }
        if with_initializer:
            kwargs['initializer'] = self.initializer
        return kwargs
G
guosheng 已提交
202 203 204 205


class WeightNormParamAttr(ParamAttr):
    """
J
jiweibo 已提交
206
	:api_attr: Static Graph
S
swtkiwi 已提交
207

208 209 210
    Note:
        Please use 'paddle.nn.utils.weight_norm' in dygraph mode.

211
    Parameter of weight Norm. Weight Norm is a reparameterization of the weight vectors
212
    in a neural network that decouples the magnitude of those weight vectors from
C
chengduoZH 已提交
213 214 215 216
    their direction. Weight Norm has been implemented as discussed in this
    paper: `Weight Normalization: A Simple Reparameterization to Accelerate
    Training of Deep Neural Networks
    <https://arxiv.org/pdf/1602.07868.pdf>`_.
217 218 219 220 221 222
      
    Note:
        ``gradient_clip`` of ``WeightNormParamAttr`` HAS BEEN DEPRECATED since 2.0. 
        It is recommended to use ``minimize(loss, grad_clip=clip)`` to clip gradient. 
        There are three clipping strategies: :ref:`api_fluid_clip_GradientClipByGlobalNorm` , 
        :ref:`api_fluid_clip_GradientClipByNorm` , :ref:`api_fluid_clip_GradientClipByValue` .
223
        
C
chengduoZH 已提交
224 225

    Args:
226 227
        dim(int): Dimension over which to compute the norm. Dim is a non-negative
            number which is less than the rank of weight Tensor. For Example, dim can
T
tianshuo78520a 已提交
228
            be chosen from 0, 1, 2, 3 for convolution whose weight shape is [cout, cin, kh, kw]
229 230 231 232 233 234 235 236 237
            and rank is 4. Default None, meaning that all elements will be normalized.
        name(str, optional): The parameter's name. Default None, meaning that the name would
            be created automatically. Please refer to :ref:`api_guide_Name` for more details.
        initializer(Initializer): The method to initialize this parameter, such as
            ``initializer = fluid.initializer.ConstantInitializer(1.0)``. Default None,
            meaning that the weight parameter is initialized by Xavier initializer, and
            the bias parameter is initialized by 0.
        learning_rate(float32): The parameter's learning rate when
            optimizer is :math:`global\_lr * parameter\_lr * scheduler\_factor`.
X
Xin Pan 已提交
238
            Default 1.0.
239 240 241 242
        regularizer (WeightDecayRegularizer, optional): Regularization strategy. There are two method: 
            :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If regularizer 
            is also set in ``optimizer`` (such as :ref:`api_fluid_optimizer_SGDOptimizer` ), that regularizer 
            setting in optimizer will be ignored. Default None, meaning there is no regularization.
243 244
        trainable(bool, optional): Whether this parameter is trainable. Default True.
        do_model_average(bool, optional): Whether this parameter should do model average.
X
Xin Pan 已提交
245
            Default False.
C
chengduoZH 已提交
246 247 248

    Examples:
        .. code-block:: python
249 250
            
            import paddle.fluid as fluid
C
chengduoZH 已提交
251 252 253
            data = fluid.layers.data(name="data", shape=[3, 32, 32], dtype="float32")
            fc = fluid.layers.fc(input=data,
                                 size=1000,
254
                                 param_attr=fluid.WeightNormParamAttr(
255 256 257 258 259 260 261
                                          dim=None,
                                          name='weight_norm_param',
                                          initializer=fluid.initializer.ConstantInitializer(1.0),
                                          learning_rate=1.0,
                                          regularizer=fluid.regularizer.L2DecayRegularizer(regularization_coeff=0.1),
                                          trainable=True,
                                          do_model_average=False))
C
chengduoZH 已提交
262

G
guosheng 已提交
263 264 265
    """
    # List to record the parameters reparameterized by weight normalization.
    # If these parameters are treated as Variable rather than Parameter,
266
    # it can be used to discriminate these parameters and help to serialize
G
guosheng 已提交
267 268 269
    # these paramters for inference.
    params_with_weight_norm = []

X
Xin Pan 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
    def __init__(self,
                 dim=None,
                 name=None,
                 initializer=None,
                 learning_rate=1.0,
                 regularizer=None,
                 trainable=True,
                 do_model_average=False):
        super(WeightNormParamAttr, self).__init__(
            name=name,
            initializer=initializer,
            learning_rate=learning_rate,
            regularizer=regularizer,
            trainable=trainable,
            do_model_average=do_model_average)
G
guosheng 已提交
285
        self.dim = dim