conv_shift_op.cc 9.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
M
Markus Kliegl 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
M
Markus Kliegl 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
M
Markus Kliegl 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
M
Markus Kliegl 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_shift_op.h"
16
#include <memory>
Y
Yi Wang 已提交
17
#include "paddle/fluid/framework/eigen.h"
M
Markus Kliegl 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31

namespace paddle {
namespace operators {

using framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

class ConvShiftOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
32 33 34
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ConvShiftOp");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "ConvShiftOp");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "ConvShiftOp");
M
Markus Kliegl 已提交
35 36 37

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
38 39 40 41 42 43 44 45 46 47 48 49
    PADDLE_ENFORCE_EQ(
        x_dims.size(), 2,
        platform::errors::InvalidArgument(
            "Input(X)'s dimensions of ConvShiftOp should be 2. "
            "But received X's shape = [%s] and the dimension is %d.",
            x_dims, x_dims.size()));
    PADDLE_ENFORCE_EQ(
        y_dims.size(), 2,
        platform::errors::InvalidArgument(
            "Input(Y)'s dimensions of ConvShiftOp should be 2. "
            "But received Y's shape = [%s] and the dimension is %d.",
            y_dims, y_dims.size()));
T
Tao Luo 已提交
50
    if (ctx->IsRuntime() || (x_dims[0] > 0 && y_dims[0] > 0))
51 52 53 54 55 56 57 58
      PADDLE_ENFORCE_EQ(
          x_dims[0], y_dims[0],
          platform::errors::InvalidArgument(
              "The first dimension of Input(X) and Input(Y) of ConvShiftOp "
              "should be equal. "
              "But received X's shape = [%s], Y's shape = [%s], "
              "and the first dimensions are %d and %d respectively.",
              x_dims, y_dims, x_dims[0], y_dims[0]));
T
Tao Luo 已提交
59
    if (ctx->IsRuntime() || y_dims[1] > 0)
60 61 62 63 64 65
      PADDLE_ENFORCE_EQ(
          y_dims[1] % 2, 1,
          platform::errors::InvalidArgument(
              "The second dimension of Input(Y) of ConvShiftOp should be odd."
              "But received Y's shape = [%s] and the second dimension is %d.",
              y_dims, y_dims[1]));
T
Tao Luo 已提交
66
    if (ctx->IsRuntime() || (x_dims[1] > 0 && y_dims[1] > 0))
67 68 69 70 71 72 73 74
      PADDLE_ENFORCE_LE(
          y_dims[1], x_dims[1],
          platform::errors::InvalidArgument(
              "The second dimension of Input(Y) of ConvShiftOp should be less "
              "than or equal to the 2nd dimension of Input(X)."
              "But received X's shape = [%s], Y's shape = [%s], "
              "and the second dimensions are %d and %d respectively.",
              x_dims, y_dims, x_dims[1], y_dims[1]));
75
    ctx->ShareDim("X", /*->*/ "Out");
M
Markus Kliegl 已提交
76 77 78 79 80 81 82 83 84
    ctx->ShareLoD("X", /*->*/ "Out");
  }
};

class ConvShiftGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
85 86 87 88
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ConvShiftGradOp");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "ConvShiftGradOp");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@GRAD", "ConvShiftGradOp");
M
Markus Kliegl 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
      auto x_dims = ctx->GetInputDim("X");
      ctx->SetOutputDim(x_grad_name, x_dims);
    }

    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(y_grad_name)) {
      auto y_dims = ctx->GetInputDim("Y");
      ctx->SetOutputDim(y_grad_name, y_dims);
    }
  }
};

class ConvShiftOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
106
  void Make() override {
M
Markus Kliegl 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    AddInput("X",
             "(Tensor, default Tensor<float>), a 2-D tensor with shape B x M, "
             "where B is the batch size and M is the data dimension.");
    AddInput("Y",
             "(Tensor, default Tensor<float>), a 2-D tensor with shape B x N, "
             "where B is the batch size and N is the data dimension. N must "
             "be odd.");
    AddOutput("Out",
              "(Tensor, default Tensor<float>), a 2-D tensor with shape B x M, "
              "i.e., the same shape as X.");
    AddComment(R"DOC(
ConvShift Operator.

A layer for circular convolution of two vectors,
as used in the Neural Turing Machine: https://arxiv.org/abs/1410.5401

The equation is:

125
$$Out[i] = \sum_{j=-(N-1)/2}^{(N-1)/2} X_{i+j} * Y_{j}$$
M
Markus Kliegl 已提交
126

127 128 129 130
where X's index is computed modulo M, and Y's index is computed modulo N.

Both inputs X and Y can carry LoD (Level of Details) information.
However, the output only shares the LoD information with input X.
M
Markus Kliegl 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

)DOC");
  }
};

template <typename T>
class ConvShiftKernel<platform::CPUPlace, T> : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *X = context.Input<Tensor>("X");
    auto *Y = context.Input<Tensor>("Y");
    auto *Out = context.Output<Tensor>("Out");
    Out->mutable_data<T>(context.GetPlace());

    auto x = EigenMatrix<T>::From(*X);
    auto y = EigenMatrix<T>::From(*Y);
    auto out = EigenMatrix<T>::From(*Out);
    out.setZero();

    size_t batch_size = X->dims()[0];
    size_t x_width = X->dims()[1];
    size_t y_width = Y->dims()[1];
    size_t y_half_width = (y_width - 1) / 2;

    for (size_t k = 0; k < batch_size; ++k) {
      for (size_t i = 0; i < x_width; ++i) {
        for (size_t j = 0; j < y_width; ++j) {
          int index = (i + j - y_half_width + x_width) % x_width;
          out(k, i) += x(k, index) * y(k, j);
        }
      }
    }
  }
};

template <typename T>
class ConvShiftGradKernel<platform::CPUPlace, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *X = context.Input<Tensor>("X");
    auto *Y = context.Input<Tensor>("Y");
    auto *dOut = context.Input<Tensor>(framework::GradVarName("Out"));
    auto *dX = context.Output<Tensor>(framework::GradVarName("X"));
    auto *dY = context.Output<Tensor>(framework::GradVarName("Y"));

    auto x = EigenMatrix<T>::From(*X);
    auto y = EigenMatrix<T>::From(*Y);
    auto dout = EigenMatrix<T>::From(*dOut);

    auto x_dims = X->dims();
    auto y_dims = Y->dims();
    size_t batch_size = x_dims[0];
    size_t x_width = x_dims[1];
    size_t y_width = y_dims[1];
    size_t y_half_width = (y_width - 1) / 2;

    // The below trades code duplication for efficiency (keeping the if
    // statement outside of the loop).
    if (dX) {
      dX->mutable_data<T>(context.GetPlace());
      auto dx = EigenMatrix<T>::From(*dX);
      dx.setZero();
      for (size_t k = 0; k < batch_size; ++k) {
        for (size_t i = 0; i < x_width; ++i) {
          for (size_t j = 0; j < y_width; ++j) {
            int index = (i + j - y_half_width + x_width) % x_width;
            dx(k, index) += dout(k, i) * y(k, j);
          }
        }
      }
    }

    if (dY) {
      dY->mutable_data<T>(context.GetPlace());
      auto dy = EigenMatrix<T>::From(*dY);
      dy.setZero();
      for (size_t k = 0; k < batch_size; ++k) {
        for (size_t i = 0; i < x_width; ++i) {
          for (size_t j = 0; j < y_width; ++j) {
            int index = (i + j - y_half_width + x_width) % x_width;
            dy(k, j) += x(k, index) * dout(k, i);
          }
        }
      }
    }
  }
};
219

H
hong 已提交
220 221
template <typename T>
class ConvShiftGradOpMaker : public framework::SingleGradOpMaker<T> {
222
 public:
H
hong 已提交
223
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
224 225

 protected:
226
  void Apply(GradOpPtr<T> op) const override {
227
    op->SetType("conv_shift_grad");
H
hong 已提交
228 229 230 231 232 233
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    op->SetAttrMap(this->Attrs());
234 235 236
  }
};

M
Markus Kliegl 已提交
237 238 239 240
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
241
REGISTER_OPERATOR(conv_shift, ops::ConvShiftOp, ops::ConvShiftOpMaker,
H
hong 已提交
242 243
                  ops::ConvShiftGradOpMaker<paddle::framework::OpDesc>,
                  ops::ConvShiftGradOpMaker<paddle::imperative::OpBase>);
244
REGISTER_OPERATOR(conv_shift_grad, ops::ConvShiftGradOp);
M
Markus Kliegl 已提交
245 246 247 248 249
REGISTER_OP_CPU_KERNEL(conv_shift,
                       ops::ConvShiftKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    conv_shift_grad,
    ops::ConvShiftGradKernel<paddle::platform::CPUPlace, float>);