conv.py 14.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

__all__ = []

from paddle import _C_ops, in_dynamic_mode
18 19 20
from paddle.fluid.layers.utils import convert_to_list
from paddle.fluid.layers.nn import elementwise_add
from ...creation import sparse_coo_tensor
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
from paddle.nn.functional.conv import _update_padding_nd


def _conv3d(x,
            weight,
            bias=None,
            stride=1,
            padding=0,
            dilation=1,
            groups=1,
            subm=False,
            data_format="NDHWC",
            name=None):
    assert in_dynamic_mode(), "Currently, only support dynamic mode"
    assert groups == 1, "Currently, only support groups=1"

    dims = 3

    # Currently, only support 'NDHWC'
    if data_format not in ["NDHWC"]:
        raise ValueError("Attr(data_format) should be 'NDHWC'. Received "
                         "Attr(data_format): {}.".format(data_format))
    if len(x.shape) != 5:
        raise ValueError(
            "Input x should be 5D tensor, but received x with the shape of {}".
            format(x.shape))

    channel_last = (data_format == "NDHWC")
    channel_dim = -1 if channel_last else 1
    if len(x.shape) != 5:
        raise ValueError(
            "Input x should be 5D tensor, but received x with the shape of {}".
            format(x.shape))
    num_channels = x.shape[channel_dim]
    if num_channels < 0:
        raise ValueError(
            "The channel dimension of the input({}) should be defined. "
            "Received: {}.".format(x.shape, num_channels))

    padding, padding_algorithm = _update_padding_nd(padding, channel_last, dims)
    stride = convert_to_list(stride, dims, 'stride')
    dilation = convert_to_list(dilation, dims, 'dilation')
    op_type = "conv3d"

65 66 67 68 69 70 71 72 73 74 75 76
    pre_bias = _C_ops.final_state_sparse_conv3d(x, weight, padding, dilation,
                                                stride, groups, subm)
    if bias is not None:
        values = pre_bias.values()
        add_bias = elementwise_add(values, bias, axis=1)
        return sparse_coo_tensor(
            pre_bias.indices(),
            add_bias,
            shape=pre_bias.shape,
            stop_gradient=pre_bias.stop_gradient)
    else:
        return pre_bias
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182


def conv3d(x,
           weight,
           bias=None,
           stride=1,
           padding=0,
           dilation=1,
           groups=1,
           data_format="NDHWC",
           name=None):
    r"""

    The sparse convolution3d functional calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are multidimensional SparseCooTensors with a shape of 
    :math:`[N, D, H, W, C]` . Where N is batch size, C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. If bias attribution is provided, 
    bias is added to the output of the convolution. 

    For each input :math:`X`, the equation is:

    ..  math::

        Out = \sigma (W \ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 1-D tensor with shape [M].
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, D_{in}, H_{in}, W_{in}, C_{in})`

          Filter shape: :math:`(D_f, H_f, W_f, C_{in}, C_{out})`

        - Output:
          Output shape: :math:`(N, D_{out}, H_{out}, W_{out}, C_{out})`

        Where

        ..  math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        x (Tensor): The input is 5-D SparseCooTensor with shape [N, D, H, W, C], the data 
            type of input is float16 or float32 or float64.
        weight (Tensor): The convolution kernel, a Tensor with shape [kD, kH, kW, C/g, M],
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
        bias (Tensor, optional): The bias, a Tensor of shape [M, ], currently, only support bias is None.
        stride (int|list|tuple): The stride size. It means the stride in convolution. If stride is a 
            list/tuple, it must contain three integers, (stride_depth, stride_height, stride_width). 
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings 
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NDHWC"`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
        dilation (int|list|tuple): The dilation size. It means the spacing between the kernel points. 
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
        groups (int): The groups number of the Conv3D Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1. Currently, only support groups=1.
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCDHW"`, `"NDHWC"`.
            The default is `"NDHWC"`. When it is `"NDHWC"`, the data is stored in the order of:
            `[batch_size, input_depth, input_height, input_width, input_channels]`.
        name(str|None): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
        A SparseCooTensor representing the conv3d, whose data type is the same with input. 

    Examples:
        .. code-block:: python

            import paddle
            from paddle.fluid.framework import _test_eager_guard

            with _test_eager_guard():
              indices = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 2], [1, 3, 2, 3]]
              values = [[1], [2], [3], [4]]
              indices = paddle.to_tensor(indices, dtype='int32')
              values = paddle.to_tensor(values, dtype='float32')
              dense_shape = [1, 1, 3, 4, 1]
183
              sparse_x = paddle.incubate.sparse.sparse_coo_tensor(indices, values, dense_shape, stop_gradient=True) 
184
              weight = paddle.randn((1, 3, 3, 1, 1), dtype='float32')
185
              y = paddle.incubate.sparse.nn.functional.conv3d(sparse_x, weight)
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
              print(y.shape)
              # (1, 1, 1, 2, 1)
    """
    return _conv3d(x, weight, bias, stride, padding, dilation, groups, False,
                   data_format, name)


def subm_conv3d(x,
                weight,
                bias=None,
                stride=1,
                padding=0,
                dilation=1,
                groups=1,
                data_format="NDHWC",
                name=None):
    r"""

    The sparse submanifold convolution3d functional calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are multidimensional SparseCooTensors with a shape of 
    :math:`[N, D, H, W, C]` . Where N is batch size, C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. If bias attribution is provided, 
    bias is added to the output of the convolution. 

    For each input :math:`X`, the equation is:

    ..  math::

        Out = W \ast X + b

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with DHWCM format.
    * :math:`\\ast`: Submanifold Convolution operation, refer to the paper: https://arxiv.org/abs/1706.01307.
    * :math:`b`: Bias value, a 1-D tensor with shape [M].
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, D_{in}, H_{in}, W_{in}, C_{in})`

          Filter shape: :math:`(D_f, H_f, W_f, C_{in}, C_{out})`

        - Output:
          Output shape: :math:`(N, D_{out}, H_{out}, W_{out}, C_{out})`

        Where

        ..  math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        x (Tensor): The input is 5-D SparseCooTensor with shape [N, D, H, W, C], the data 
            type of input is float16 or float32 or float64.
        weight (Tensor): The convolution kernel, a Tensor with shape [kD, kH, kW, C/g, M],
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
        bias (Tensor, optional): The bias, a Tensor of shape [M, ], currently, only support bias is None.
        stride (int|list|tuple): The stride size. It means the stride in convolution. If stride is a 
            list/tuple, it must contain three integers, (stride_depth, stride_height, stride_width). 
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings 
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NHWC"`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
        dilation (int|list|tuple): The dilation size. It means the spacing between the kernel points. 
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
        groups (int): The groups number of the Conv3D Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Currently, only support groups=1.
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCDHW"`, `"NDHWC"`.
            The default is `"NDHWC"`. When it is `"NDHWC"`, the data is stored in the order of:
            `[batch_size, input_depth, input_height, input_width, input_channels]`.
        name(str|None): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
        A SparseCooTensor representing the conv3d, whose data type is 
        the same with input. 

    Examples:
        .. code-block:: python

            import paddle
            from paddle.fluid.framework import _test_eager_guard

            with _test_eager_guard():
              indices = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 2], [1, 3, 2, 3]]
              values = [[1], [2], [3], [4]]
              indices = paddle.to_tensor(indices, dtype='int32')
              values = paddle.to_tensor(values, dtype='float32')
              dense_shape = [1, 1, 3, 4, 1]
298
              sparse_x = paddle.incubate.sparse.sparse_coo_tensor(indices, values, dense_shape, stop_gradient=True) 
299
              weight = paddle.randn((1, 3, 3, 1, 1), dtype='float32')
300
              y = paddle.incubate.sparse.nn.functional.subm_conv3d(sparse_x, weight)
301 302 303 304 305
              print(y.shape)
              #(1, 1, 3, 4, 1)
    """
    return _conv3d(x, weight, bias, stride, padding, dilation, groups, True,
                   data_format, name)