requantize_mkldnn_op.cc 3.2 KB
Newer Older
X
xiaolil1 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "mkldnn.hpp"
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/requantize_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"

namespace paddle {
namespace operators {

using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using platform::to_void_cast;
using Tensor = framework::Tensor;
using framework::DataLayout;
using mkldnn::stream;
using platform::GetMKLDNNFormat;

template <typename T>
class ReQuantOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("Input");
    auto scale_in = ctx.Attr<float>("Scale_in");
    auto scale_out = ctx.Attr<float>("Scale_out");
    auto* output = ctx.Output<Tensor>("Output");
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& engine = dev_ctx.GetEngine();

    std::vector<primitive> pipeline;
A
Adam 已提交
46 47
    auto src_tz = paddle::framework::vectorize<int64_t>(input->dims());
    auto dst_tz = paddle::framework::vectorize<int64_t>(output->dims());
X
xiaolil1 已提交
48 49
    mkldnn::memory::data_type src_dt =
        paddle::framework::ToMKLDNNDataType(input->type());
50
    mkldnn::memory::data_type dst_dt = src_dt;
51 52
    MKLDNNMemoryFormat src_fmt = MKLDNNMemoryFormat::nhwc;
    MKLDNNMemoryFormat dst_fmt = MKLDNNMemoryFormat::nhwc;
X
xiaolil1 已提交
53 54 55 56 57 58 59 60 61 62

    const T* input_data = input->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());
    float scale_shift = scale_out / scale_in;

    mkldnn::primitive_attr attri;
    int mask = 0;
    attri.set_output_scales(mask, {scale_shift});

    auto src_md = platform::MKLDNNMemDesc({src_tz}, src_dt, src_fmt);
A
Adam 已提交
63 64
    auto src_memory = std::make_shared<mkldnn::memory>(
        src_md, engine, to_void_cast<T>(input_data));
X
xiaolil1 已提交
65 66

    auto dst_md = platform::MKLDNNMemDesc({dst_tz}, dst_dt, dst_fmt);
A
Adam 已提交
67 68
    auto dst_memory =
        mkldnn::memory(dst_md, engine, to_void_cast<T>(output_data));
X
xiaolil1 已提交
69 70

    auto reorder_pd = std::shared_ptr<reorder::primitive_desc>(
A
Adam 已提交
71
        new reorder::primitive_desc(*src_memory, dst_memory, attri));
X
xiaolil1 已提交
72

A
Adam 已提交
73 74 75 76 77
    auto reorder_p = std::shared_ptr<reorder>(new reorder(*reorder_pd));

    mkldnn::stream astream(engine);
    reorder_p->execute(astream, *src_memory, dst_memory);
    astream.wait();
X
xiaolil1 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90

    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(dst_memory));
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(requantize, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::ReQuantOpKernel<int8_t>, ops::ReQuantOpKernel<uint8_t>);