device_context.cc 22.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
6

Q
qijun 已提交
7 8 9 10 11
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
12
#include "paddle/fluid/platform/device_context.h"
13
#include <set>
14
#include <string>
Y
Yu Yang 已提交
15
#include <unordered_set>
16 17
#include <vector>

Y
Yi Wang 已提交
18
#include "paddle/fluid/memory/memory.h"
19 20
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/rw_lock.h"
21
#include "paddle/fluid/memory/allocation/cuda_device_context_allocator.h"
S
sneaxiy 已提交
22
#include "paddle/fluid/platform/cuda_device_guard.h"
23
#endif
24

25 26
#include "glog/logging.h"

27 28 29 30 31
namespace paddle {
namespace memory {

AllocationPtr Alloc(const platform::DeviceContext& dev_ctx, size_t size) {
  auto place = dev_ctx.GetPlace();
32
  if (size == 0) {
33 34
    return Alloc(place, size);
  }
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

  if (platform::is_gpu_place(place)) {
#ifdef PADDLE_WITH_CUDA
    auto* default_dev_ctx = static_cast<platform::CUDADeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
    auto& desired_dev_ctx =
        static_cast<const platform::CUDADeviceContext&>(dev_ctx);
    if (default_dev_ctx->stream() == desired_dev_ctx.stream()) {
      return Alloc(place, size);
    } else {
      return allocation::CUDADeviceContextAllocatorPool::Instance().Alloc(
          desired_dev_ctx, size);
    }
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use CUDA device since it's not compiled with CUDA,"
        "Please recompile or reinstall Paddle with GPU support."));
#endif
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
    // TODO(liuyuhui): Consider xpu stream later
56 57
    return Alloc(place, size);
#else
58 59 60
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use XPU device since it's not compiled with XPU,"
        "Please recompile or reinstall Paddle with XPU support."));
61
#endif
62 63 64
  } else {
    return Alloc(place, size);
  }
65 66 67 68 69
}

}  // namespace memory
}  // namespace paddle

Q
qijun 已提交
70 71 72
namespace paddle {
namespace platform {

73 74 75 76
#ifdef PADDLE_WITH_CUDA
bool allow_tf32_cublas = true;
void SetAllowTF32Cublas(bool active) { allow_tf32_cublas = active; }
bool AllowTF32Cublas() { return allow_tf32_cublas; }
A
AshburnLee 已提交
77 78 79 80

bool allow_tf32_cudnn = true;
void SetAllowTF32Cudnn(bool active) { allow_tf32_cudnn = active; }
bool AllowTF32Cudnn() { return allow_tf32_cudnn; }
81 82
#endif  // PADDLE_WITH_CUDA

D
dzhwinter 已提交
83 84
DeviceContextPool* DeviceContextPool::pool = nullptr;

Y
Yu Yang 已提交
85
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
86
  VLOG(4) << "DeviceContextPool Get: " << place;
D
dzhwinter 已提交
87 88
  auto it = device_contexts_.find(place);
  if (it == device_contexts_.end()) {
G
GaoWei8 已提交
89 90
    PADDLE_THROW(platform::errors::Unimplemented(
        "Place %s is not supported. Please check that your paddle compiles "
91 92
        "with WITH_GPU, WITH_XPU or WITH_ASCEND_CL option or check that "
        "your train process set the correct device id if you use Executor.",
G
GaoWei8 已提交
93
        place));
D
dzhwinter 已提交
94
  }
95
  return it->second.get().get();
D
dzhwinter 已提交
96 97
}

98 99 100 101 102 103 104 105 106
template <typename DevCtx, typename PlaceType>
inline void EmplaceDeviceContext(
    std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
        map_ptr,
    platform::Place p) {
  using PtrType = std::unique_ptr<DeviceContext>;
  map_ptr->emplace(p, std::async(std::launch::deferred, [=] {
                     // lazy evaluation. i.e., only create device context at
                     // first `Get`
107
                     return PtrType(new DevCtx(BOOST_GET_CONST(PlaceType, p)));
108
                   }));
C
chengduozh 已提交
109 110
}

D
dzhwinter 已提交
111 112
DeviceContextPool::DeviceContextPool(
    const std::vector<platform::Place>& places) {
G
GaoWei8 已提交
113 114 115 116 117
  PADDLE_ENFORCE_GT(
      places.size(), 0,
      platform::errors::InvalidArgument("The number of platform places should "
                                        "be larger than 0. But received %d.",
                                        places.size()));
118
  std::set<Place> set;
Y
Yu Yang 已提交
119 120 121 122 123
  for (auto& p : places) {
    set.insert(p);
  }
  for (auto& p : set) {
    if (platform::is_cpu_place(p)) {
124
#ifdef PADDLE_WITH_MKLDNN
125
      EmplaceDeviceContext<MKLDNNDeviceContext, CPUPlace>(&device_contexts_, p);
126
#else
127
      EmplaceDeviceContext<CPUDeviceContext, CPUPlace>(&device_contexts_, p);
128
#endif
Y
Yu Yang 已提交
129
    } else if (platform::is_gpu_place(p)) {
D
dzhwinter 已提交
130
#ifdef PADDLE_WITH_CUDA
131
      EmplaceDeviceContext<CUDADeviceContext, CUDAPlace>(&device_contexts_, p);
D
dzhwinter 已提交
132
#else
G
GaoWei8 已提交
133 134 135
      PADDLE_THROW(
          platform::errors::Unimplemented("CUDAPlace is not supported. Please "
                                          "re-compile with WITH_GPU option."));
C
chengduoZH 已提交
136 137 138
#endif
    } else if (platform::is_cuda_pinned_place(p)) {
#ifdef PADDLE_WITH_CUDA
139 140
      EmplaceDeviceContext<CUDAPinnedDeviceContext, CUDAPinnedPlace>(
          &device_contexts_, p);
C
chengduoZH 已提交
141
#else
G
GaoWei8 已提交
142
      PADDLE_THROW(platform::errors::Unimplemented(
G
GaoWei8 已提交
143 144
          "CUDAPlace is not supported. Please re-compile with WITH_GPU "
          "option."));
145 146 147 148 149 150 151 152
#endif
    } else if (platform::is_xpu_place(p)) {
#ifdef PADDLE_WITH_XPU
      EmplaceDeviceContext<XPUDeviceContext, XPUPlace>(&device_contexts_, p);
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("XPUPlace is not supported. Please "
                                          "re-compile with WITH_XPU option."));
153 154 155 156 157 158 159 160
#endif
    } else if (platform::is_npu_place(p)) {
#ifdef PADDLE_WITH_ASCEND_CL
      EmplaceDeviceContext<NPUDeviceContext, NPUPlace>(&device_contexts_, p);
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "NPUPlace is not supported. Please "
          "re-compile with WITH_ASCEND_CL option."));
D
dzhwinter 已提交
161 162 163 164 165
#endif
    }
  }
}

166 167 168 169
CPUDeviceContext::CPUDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

D
dzhwinter 已提交
170
CPUDeviceContext::CPUDeviceContext(CPUPlace place) : place_(place) {
171 172 173 174 175 176 177
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CPUDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

D
dzhwinter 已提交
178
Place CPUDeviceContext::GetPlace() const { return place_; }
179

180 181 182
#ifdef PADDLE_WITH_XPU
XPUDeviceContext::XPUDeviceContext() { context_ = xpu::create_context(); }

183 184 185 186 187 188 189 190 191 192
XPUDeviceContext::~XPUDeviceContext() {
  xpu::destroy_context(context_);
  void* l3ptr = nullptr;
  int l3_size = 13.5 * 1024 * 1024;
  xpu_malloc(static_cast<void**>(&l3ptr), l3_size, XPU_MEM_L3);
  if (l3ptr != nullptr) {
    context_->_l3_mgr.set(l3ptr, l3_size);
    std::cout << "set l3 size " << l3_size << std::endl;
  }
}
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

XPUDeviceContext::XPUDeviceContext(XPUPlace place) : place_(place) {
  int dev_id = -1;
  int ret = xpu_current_device(&dev_id);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
  ret = xpu_set_device(place.device);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
  context_ = xpu::create_context();
209 210 211 212 213 214 215
  void* l3ptr = nullptr;
  int l3_size = 13.5 * 1024 * 1024;
  xpu_malloc(static_cast<void**>(&l3ptr), l3_size, XPU_MEM_L3);
  if (l3ptr != nullptr) {
    context_->_l3_mgr.set(l3ptr, l3_size);
    std::cout << "set l3 size " << l3_size << std::endl;
  }
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
  ret = xpu_set_device(dev_id);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
}

void XPUDeviceContext::Wait() const {
  int ret = xpu_set_device(place_.device);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
  xpu_wait();
}

Place XPUDeviceContext::GetPlace() const { return place_; }

xpu::Context* XPUDeviceContext::x_context() const { return context_; }
#endif

239 240 241 242 243 244 245 246
#ifdef PADDLE_WITH_ASCEND_CL
NPUDeviceContext::NPUDeviceContext(NPUPlace place) : place_(place) {
  NPUDeviceGuard guard(place_.device);
  // PADDLE_ENFORCE_NPU_SUCCESS(aclrtCreateContext(&context_, place_.device));
  // NOTE(zhiqiu): Usually, no need to create context explicitly,
  // ACL creates a default context which contains 1 default stream
  // and 1 sync strean after aclrtSetDevice.
  PADDLE_ENFORCE_NPU_SUCCESS(aclrtGetCurrentContext(&context_));
247
  stream_.reset(new stream::NPUStream(place));
248 249 250 251 252 253 254 255 256 257 258 259
}

NPUDeviceContext::~NPUDeviceContext() {
  // NPUDeviceGuard guard(place_.device);
  // PADDLE_ENFORCE_NPU_SUCCESS(aclrtDestroyContext(context_));
}

void NPUDeviceContext::Wait() const {
  NPUDeviceGuard guard(place_.device);
  PADDLE_ENFORCE_NPU_SUCCESS(aclrtSynchronizeDevice());
}

260 261
aclrtStream NPUDeviceContext::stream() const { return stream_->raw_stream(); }

262 263 264 265 266 267 268
Place NPUDeviceContext::GetPlace() const { return place_; }

aclrtContext* NPUDeviceContext::context() const {
  return const_cast<aclrtContext*>(&context_);
}
#endif

269
#ifdef PADDLE_WITH_CUDA
270

Q
init  
qijun 已提交
271 272 273 274 275 276 277
class EigenCudaStreamDevice : public Eigen::StreamInterface {
 public:
  EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
    Eigen::initializeDeviceProp();
  }
  ~EigenCudaStreamDevice() override {}

D
dzhwinter 已提交
278
  void Reinitialize(const cudaStream_t* cuda_stream, CUDAPlace place) {
Q
init  
qijun 已提交
279 280 281 282 283 284 285 286 287 288 289 290
    stream_ = cuda_stream;
    place_ = place;
    device_prop_ = &Eigen::m_deviceProperties[place.device];
  }

  const cudaStream_t& stream() const override { return *stream_; }

  const cudaDeviceProp& deviceProperties() const override {
    return *device_prop_;
  }

  void* allocate(size_t num_bytes) const override {
S
sneaxiy 已提交
291 292 293
    if (UNLIKELY(num_bytes == 0)) {
      return nullptr;
    }
294 295 296
    auto buf = memory::Alloc(place_, num_bytes);
    VLOG(4) << "Eigen allocated at " << buf->ptr() << ", size" << buf->size()
            << " requested " << num_bytes;
297
    void* retv = buf->ptr();
S
sneaxiy 已提交
298 299 300 301
    {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.emplace(retv, std::move(buf));
    }
302
    return retv;
Q
init  
qijun 已提交
303 304
  }

S
sneaxiy 已提交
305 306 307 308 309 310
  void deallocate(void* buffer) const override {
    if (LIKELY(buffer)) {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.erase(buffer);
    }
  }
Q
init  
qijun 已提交
311 312 313

  void* scratchpad() const override {
    if (scratch_ == NULL) {
Z
Zhang Ting 已提交
314 315 316 317
// windows use an old version of eigen that uses kCudaScratchSize,
// once windows updates eigen to a recent version, the following code
// can use kGpuScratchSize uniformly
#ifdef _WIN32
Q
init  
qijun 已提交
318
      scratch_ = allocate(Eigen::kCudaScratchSize + sizeof(unsigned int));
Z
Zhang Ting 已提交
319 320 321
#else
      scratch_ = allocate(Eigen::kGpuScratchSize + sizeof(unsigned int));
#endif
Q
init  
qijun 已提交
322 323 324 325 326 327
    }
    return scratch_;
  }

  unsigned int* semaphore() const override {
    if (semaphore_ == NULL) {
Z
Zhang Ting 已提交
328
#ifdef _WIN32
Q
init  
qijun 已提交
329 330
      char* scratch =
          static_cast<char*>(scratchpad()) + Eigen::kCudaScratchSize;
Z
Zhang Ting 已提交
331 332 333
#else
      char* scratch = static_cast<char*>(scratchpad()) + Eigen::kGpuScratchSize;
#endif
Q
init  
qijun 已提交
334
      semaphore_ = reinterpret_cast<unsigned int*>(scratch);
335
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
init  
qijun 已提交
336 337 338 339 340 341
          cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
    }
    return semaphore_;
  }

 private:
D
dzhwinter 已提交
342
  CUDAPlace place_;
Q
init  
qijun 已提交
343 344
  const cudaStream_t* stream_;         // not owned;
  const cudaDeviceProp* device_prop_;  // not owned;
Q
qijun 已提交
345
  mutable void* scratch_;
Q
init  
qijun 已提交
346
  mutable unsigned int* semaphore_;
S
sneaxiy 已提交
347
  mutable std::mutex mtx_;  // to protect allocations_
Y
Yu Yang 已提交
348
  mutable std::unordered_map<void*, memory::AllocationPtr> allocations_;
Q
init  
qijun 已提交
349 350
};

351 352 353 354 355 356 357 358 359
void CudnnWorkspaceHandle::ReallocWorkspace(size_t required_workspace_bytes) {
  if (required_workspace_bytes <= WorkspaceSize()) {
    return;
  }
  // reset allocation first before re-allocate to save memory
  allocation_.reset();
  allocation_ = memory::Alloc(device_context_, required_workspace_bytes);
}

360 361 362 363 364 365 366 367 368 369 370 371
thread_local std::unordered_map<const CUDADeviceContext*,
                                std::shared_ptr<CUDAContext>>
    CUDADeviceContext::thread_ctx_;
thread_local std::mutex CUDADeviceContext::ctx_mtx_;

void CUDAContext::InitEigenContext() {
  eigen_stream_.reset(new EigenCudaStreamDevice());
  eigen_stream_->Reinitialize(&RawStream(), place_);
  eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
}

CUDAContext::CUDAContext(const CUDAPlace& place,
372
                         const stream::Priority& priority) {
373 374 375 376 377 378
  place_ = place;
  CUDADeviceGuard guard(place_.device);
  stream_.reset(new stream::CUDAStream(place, priority));
  InitEigenContext();
  InitCuBlasContext();
  InitCuDNNContext();
G
Guo Sheng 已提交
379
  InitCuSolverContext();
380 381 382 383 384 385
}

CUDAContext::~CUDAContext() {
  CUDADeviceGuard guard(place_.device);
  DestoryCuDNNContext();
  DestoryCuBlasContext();
G
Guo Sheng 已提交
386
  DestoryCuSolverContext();
387 388
}

389
CUDADeviceContext::CUDADeviceContext(CUDAPlace place) : place_(place) {
Y
Yu Yang 已提交
390
  CUDADeviceGuard guard(place_.device);
C
chengduo 已提交
391 392 393
  compute_capability_ = GetCUDAComputeCapability(place_.device);
  multi_process_ = GetCUDAMultiProcessors(place_.device);
  max_threads_per_mp_ = GetCUDAMaxThreadsPerMultiProcessor(place_.device);
394
  max_grid_dim_size_ = GetGpuMaxGridDimSize(place_.device);
395
  max_threads_per_block_ = GetCUDAMaxThreadsPerBlock(place_.device);
396

C
chengduo 已提交
397 398 399
  driver_version_ = GetCUDADriverVersion(place_.device);
  runtime_version_ = GetCUDARuntimeVersion(place_.device);

400
  LOG_FIRST_N(WARNING, 1) << "Please NOTE: device: " << place_.device
401 402 403
                          << ", GPU Compute Capability: "
                          << compute_capability_ / 10 << "."
                          << compute_capability_ % 10
C
chengduo 已提交
404
                          << ", Driver API Version: " << driver_version_ / 1000
405
                          << "." << (driver_version_ % 100) / 10
C
chengduo 已提交
406 407 408
                          << ", Runtime API Version: "
                          << runtime_version_ / 1000 << "."
                          << (runtime_version_ % 100) / 10;
409 410 411
  size_t cudnn_dso_ver = dynload::cudnnGetVersion();
  LOG_FIRST_N(WARNING, 1) << "device: " << place_.device
                          << ", cuDNN Version: " << cudnn_dso_ver / 1000 << "."
412
                          << (cudnn_dso_ver % 1000) / 100 << ".";
S
sneaxiy 已提交
413 414 415

  {
    // Check CUDA/CUDNN version compatiblity
416 417 418 419
    auto local_cuda_version =
        (driver_version_ / 1000) * 10 + (driver_version_ % 100) / 10;
    auto compile_cuda_version =
        (CUDA_VERSION / 1000) * 10 + (CUDA_VERSION % 100) / 10;
S
sneaxiy 已提交
420 421 422 423 424 425 426 427 428 429 430 431
    if (local_cuda_version < compile_cuda_version) {
      LOG_FIRST_N(WARNING, 1)
          << "WARNING: device: " << place_.device
          << ". The installed Paddle is compiled with CUDA "
          << compile_cuda_version / 10 << "." << compile_cuda_version % 10
          << ", but CUDA runtime version in your machine is "
          << local_cuda_version / 10 << "." << local_cuda_version % 10
          << ", which may cause serious incompatible bug. "
          << "Please recompile or reinstall Paddle with compatible CUDA "
             "version.";
    }
  }
432
  default_ctx_.reset(new CUDAContext(place_));
433 434 435 436
}

CUDADeviceContext::~CUDADeviceContext() {
  SetDeviceId(place_.device);
437 438 439 440 441
#if defined(PADDLE_WITH_NCCL)
  if (nccl_comm_) {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::ncclCommDestroy(nccl_comm_));
  }
#endif
442 443
}

L
liaogang 已提交
444
Place CUDADeviceContext::GetPlace() const { return place_; }
445

446
void CUDADeviceContext::Wait() const { context()->Stream()->Wait(); }
447

K
Kexin Zhao 已提交
448
int CUDADeviceContext::GetComputeCapability() const {
C
chengduo 已提交
449
  return compute_capability_;
K
Kexin Zhao 已提交
450 451
}

452
int CUDADeviceContext::GetMaxPhysicalThreadCount() const {
C
chengduo 已提交
453
  return multi_process_ * max_threads_per_mp_;
454 455
}

456 457 458 459 460 461
int CUDADeviceContext::GetSMCount() const { return multi_process_; }

int CUDADeviceContext::GetMaxThreadsPerBlock() const {
  return max_threads_per_block_;
}

462
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
463
  return context()->EigenDevice().get();
464 465
}

466
bool CUDADeviceContext::tensor_core_available() const {
467
  return context()->CublasTensorCoreHandle() != nullptr;
S
sneaxiy 已提交
468 469
}

470 471 472 473
dim3 CUDADeviceContext::GetCUDAMaxGridDimSize() const {
  return max_grid_dim_size_;
}

474 475 476
cudnnHandle_t CUDADeviceContext::cudnn_handle() const {
  return context()->CudnnHandle();
}
477

S
sneaxiy 已提交
478
CudnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const {
479
  return CudnnWorkspaceHandle(*this, &cudnn_handle_mtx_);
480
}
481

G
Guo Sheng 已提交
482 483 484 485
cusolverDnHandle_t CUDADeviceContext::cusolver_dn_handle() const {
  return context()->CusolverDnHandle();
}

486 487 488
cudaStream_t CUDADeviceContext::stream() const {
  return context()->RawStream();
}
Q
qijun 已提交
489

C
chengduoZH 已提交
490 491 492 493 494 495 496 497 498 499 500 501 502 503
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

Place CUDAPinnedDeviceContext::GetPlace() const { return place_; }
L
Luo Tao 已提交
504
#endif
Q
qijun 已提交
505

T
tensor-tang 已提交
506 507
#ifdef PADDLE_WITH_MKLDNN
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
A
Adam 已提交
508 509 510
    : CPUDeviceContext(place),
      engine_(mkldnn::engine::kind::cpu, 0),
      p_blobmap_() {
511 512
  p_blobmap_.reset(new BlobMap());
  p_mutex_.reset(new std::mutex());
T
tensor-tang 已提交
513 514
}

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
MKLDNNDeviceContextThreadLocals::Body::Body() {
  cur_mkldnn_session_id = kMKLDNNSessionID_Default;
  cur_input_shape_str = "";
  cur_input_shape_cache_capacity = 1;
  cur_paddle_data_layout = paddle::framework::DataLayout::kNCHW;
}

void MKLDNNDeviceContextThreadLocals::Body::set_cur_mkldnn_session_id(
    size_t sid) {
  cur_mkldnn_session_id = sid;
}
size_t MKLDNNDeviceContextThreadLocals::Body::get_cur_mkldnn_session_id(void) {
  return cur_mkldnn_session_id;
}

void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_str(
    std::string input_shape_str) {
532 533
  cur_input_shape_str = input_shape_str;
}
534 535
void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_cache_capacity(
    int input_shape_cache_capacity) {
536 537
  cur_input_shape_cache_capacity = input_shape_cache_capacity;
}
S
Sylwester Fraczek 已提交
538

539 540
void MKLDNNDeviceContextThreadLocals::Body::set_cur_paddle_data_layout(
    framework::DataLayout dl) {
541 542 543
  cur_paddle_data_layout = dl;
}

544 545
framework::DataLayout
MKLDNNDeviceContextThreadLocals::Body::get_cur_paddle_data_layout(void) {
546 547 548
  return cur_paddle_data_layout;
}

549 550 551 552 553 554 555 556 557
void MKLDNNDeviceContextThreadLocals::Body::log_lib_version(void) {
  if (!said_once) {
    said_once = true;
    auto dv = dnnl::version();
    LOG(INFO) << "oneDNN v" << dv->major << "." << dv->minor << "."
              << dv->patch;
  }
}

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
void MKLDNNDeviceContext::ResetBlobMap() {
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
  if (!block_next_cache_clearing_) {
    VLOG(3) << "Clearing DNNL cache.";
    p_blobmap_->clear();
  } else {
    VLOG(3) << "Prevented Clearing DNNL cache.";
    block_next_cache_clearing_ = false;
  }
}

void MKLDNNDeviceContext::BlockNextCacheClearing() {
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
  VLOG(3) << "Next DNNL cache clearing has been blocked.";
  block_next_cache_clearing_ = true;
573
}
574

575
size_t MKLDNNDeviceContext::GetShapeBlobSize() const {
576
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
577
  BlobMap* pMap = p_blobmap_.get();
578
  auto map_it = pMap->find(tls().cur_mkldnn_session_id);
579
  if (map_it == pMap->end()) {
580 581 582
    PADDLE_THROW(platform::errors::NotFound(
        "MKLDNNDeviceContext don't find cur_mkldnn_session_id: %d.",
        tls().cur_mkldnn_session_id));
583 584 585 586
  }
  return map_it->second->size();
}

587
void MKLDNNDeviceContext::SetBlob(const std::string& name,
588
                                  BlobPtr_t<void> data) const {
589
  BlobMap* pMap = p_blobmap_.get();
590 591
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
  BlobPtr_t<KeyBlob> pBlob = nullptr;
592

593
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
594

595
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
T
tensor-tang 已提交
596

597 598
  // Find ShapeBlob for current mkldnn session id.
  auto map_it = pMap->find(sid);
599 600 601

  if (map_it == pMap->end()) {
    // 1st time to set blob in current thread
602
    sBlob = std::make_shared<ShapeBlob>();
603 604
    (*pMap)[sid] = sBlob;
    VLOG(2) << "SetBlob: sid=" << sid << ", add new sid\n";
605
  } else {
606
    sBlob = map_it->second;
607
  }
T
tensor-tang 已提交
608

609
  // Find KeyBlob for current input shape
610
  auto key_it = sBlob->find(tls().cur_input_shape_str);
611

612
  if (key_it == sBlob->end()) {
613 614
    // In cache clearing mode, cur_input_shape_cache_capacity defines
    // max pblob capacity
615 616
    if ((static_cast<size_t>(sid) ==
         MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_CacheClearing) &&
617
        sBlob->size() &&
618
        (sBlob->size() >=
619
         static_cast<size_t>(tls().cur_input_shape_cache_capacity))) {
620 621 622 623
      VLOG(2) << "sid=" << sid
              << ", remove all blobs of shape: " << sBlob->begin()->first;
      sBlob->erase(sBlob->begin()->first);
    }
624 625
    pBlob = std::make_shared<KeyBlob>();
    (*sBlob)[tls().cur_input_shape_str] = pBlob;
626
  } else {
627
    pBlob = key_it->second;
628 629
  }

630 631 632 633 634 635 636
  // Find Blob via name
  auto blob_it = pBlob->find(name);
  if (blob_it == pBlob->end()) {
    (*pBlob)[name] = data;
  } else {
    blob_it->second = data;  // set data to existing blob
  }
637
  VLOG(2) << "SetBlob: sid=" << sid << ", add blob=" << name << "\n";
638
  // lock will be automatically released when out of scope
639
  return;
T
tensor-tang 已提交
640 641
}

642 643 644 645 646 647 648 649 650 651
unsigned int MKLDNNDeviceContext::GetCachedObjectsNumber(void) {
  unsigned int num_entries = 0;
  for (auto const& l3 : *p_blobmap_) {
    for (auto const& l2 : *(l3.second)) {
      num_entries += (l2.second)->size();
    }
  }
  return num_entries;
}

652
MKLDNNDeviceContext::BlobPtr_t<void> MKLDNNDeviceContext::GetBlob(
653
    const std::string& name) const {
654
  BlobMap* pMap = p_blobmap_.get();
655 656
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
  BlobPtr_t<KeyBlob> pBlob = nullptr;
T
tensor-tang 已提交
657

658
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
659

660
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
661

662 663
  // Find ShapeBlob for current mkldnn session id firstly
  auto map_it = pMap->find(sid);
664
  if (map_it == pMap->end()) {
665
    VLOG(2) << "GetBlob: sid=" << sid << ", miss sid\n";
666 667 668 669 670
    return nullptr;
  }
  sBlob = map_it->second;

  // Find KeyBlob for current input shape secondly
671
  auto sBlob_it = sBlob->find(tls().cur_input_shape_str);
672
  if (sBlob_it == sBlob->end()) {
673
    VLOG(2) << "GetBlob: sid=" << tls().cur_input_shape_str
674 675 676 677
            << ", miss input_shape_str\n";
    return nullptr;
  }
  pBlob = sBlob_it->second;
678 679 680 681

  // Find Blob via name
  auto key_it = pBlob->find(name);

682
  if (key_it == pBlob->end()) {
683
    VLOG(2) << "GetBlob sid=" << sid << ", miss blob=" << name << "\n";
684 685
    return nullptr;
  }
686

687
  VLOG(2) << "GetBlob sid=" << sid << ", get blob=" << name << "\n";
688 689
  // lock will be automatically released when out of scope
  return key_it->second;
T
tensor-tang 已提交
690 691 692
}

#endif
Q
qijun 已提交
693
}  // namespace platform
Q
qijun 已提交
694
}  // namespace paddle