adam_op.cc 6.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/optimizers/adam_op.h"
16 17 18 19

namespace paddle {
namespace operators {

D
dzhwinter 已提交
20
using Tensor = framework::Tensor;
21

Y
Yibing Liu 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
void AdamOp::InferShape(framework::InferShapeContext* ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("Param"),
                 "Input(Param) of AdamOp should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("Grad"),
                 "Input(Grad) of AdamOp should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("Moment1"),
                 "Input(Moment1) of AdamOp should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("Moment2"),
                 "Input(Moment2) of AdamOp should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("LearningRate"),
                 "Input(LearningRate) of AdamOp should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("Beta1Pow"),
                 "Input(Beta1Pow) of AdamOp should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("Beta2Pow"),
                 "Input(Beta2Pow) of AdamOp should not be null.");
37

Y
Yibing Liu 已提交
38 39 40 41 42 43
  PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
                 "Output(ParamOut) of AdamOp should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Moment1Out"),
                 "Output(Moment1Out) of AdamOp should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Moment2Out"),
                 "Output(Moment2Out) of AdamOp should not be null.");
44

Y
Yibing Liu 已提交
45 46 47 48 49 50 51 52 53
  auto lr_dims = ctx->GetInputDim("LearningRate");
  PADDLE_ENFORCE_EQ(framework::product(lr_dims), 1,
                    "Learning rate should have 1 dimension");
  auto beta1_pow_dims = ctx->GetInputDim("Beta1Pow");
  PADDLE_ENFORCE_EQ(framework::product(beta1_pow_dims), 1,
                    "Beta1 power accumulator should have 1 dimension");
  auto beta2_pow_dims = ctx->GetInputDim("Beta2Pow");
  PADDLE_ENFORCE_EQ(framework::product(beta2_pow_dims), 1,
                    "Beta2 power accumulator should have 1 dimension");
54

Y
Yibing Liu 已提交
55 56 57
  auto param_dims = ctx->GetInputDim("Param");
  if (ctx->GetInputsVarType("Grad")[0] ==
      framework::proto::VarType::LOD_TENSOR) {
58
    PADDLE_ENFORCE_EQ(
Y
Yibing Liu 已提交
59 60
        param_dims, ctx->GetInputDim("Grad"),
        "Param and Grad input of AdamOp should have same dimension");
61
  }
Y
Yibing Liu 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
  PADDLE_ENFORCE_EQ(
      param_dims, ctx->GetInputDim("Moment1"),
      "Param and Moment1 input of AdamOp should have same dimension");
  PADDLE_ENFORCE_EQ(
      param_dims, ctx->GetInputDim("Moment2"),
      "Param and Moment2 input of AdamOp should have same dimension");

  ctx->SetOutputDim("ParamOut", param_dims);
  ctx->SetOutputDim("Moment1Out", param_dims);
  ctx->SetOutputDim("Moment2Out", param_dims);
}

framework::OpKernelType AdamOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  auto input_data_type = ctx.Input<framework::Tensor>("Param")->type();
  return framework::OpKernelType(input_data_type, ctx.GetPlace());
}
79 80 81

class AdamOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
82
  void Make() override {
83 84 85 86 87 88 89 90
    AddInput("Param", "(Tensor) Input parameter");
    AddInput("Grad", "(Tensor) Input gradient");
    AddInput("LearningRate", "(Tensor) Learning rate");
    AddInput("Moment1", "(Tensor) Input first moment");
    AddInput("Moment2", "(Tensor) Input second moment");
    AddInput("Beta1Pow", "(Tensor) Input beta1 power accumulator");
    AddInput("Beta2Pow", "(Tensor) Input beta2 power accumulator");

91 92 93
    AddOutput("ParamOut", "(Tensor) Output parameter");
    AddOutput("Moment1Out", "(Tensor) Output first moment");
    AddOutput("Moment2Out", "(Tensor) Output second moment");
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

    AddAttr<float>("beta1",
                   "(float, default 0.9) "
                   "Exponential decay rate for the "
                   "first moment estimates.")
        .SetDefault(0.9f);
    AddAttr<float>("beta2",
                   "(float, default 0.999) "
                   "exponential decay rate for the "
                   "second moment estimates.")
        .SetDefault(0.999f);
    AddAttr<float>("epsilon",
                   "(float, default 1.0e-8) "
                   "Constant for numerical stability")
        .SetDefault(1.0e-8f);
Q
Qiao Longfei 已提交
109
    AddAttr<bool>(
Q
Qiao Longfei 已提交
110
        "lazy_mode",
Q
Qiao Longfei 已提交
111 112 113
        "(bool, default false) "
        "only update the parameter that has gradient in sparse update")
        .SetDefault(false);
114 115 116 117 118 119
    AddAttr<int64_t>("min_row_size_to_use_multithread",
                     "(int64_t, default 0) "
                     "when not zero, if param row size is larger then "
                     "min_row_size_to_use_multithread and "
                     "inner_op_parallelism is larger then 0, sparse update "
                     "will run in multithread mode")
120
        .SetDefault(1000);
121 122

    AddComment(R"DOC(
123
Adam Optimizer.
124 125

This implements the Adam optimizer from Section 2 of the Adam
126 127 128
paper : https://arxiv.org/abs/1412.6980.
Adam is a first-order gradient-based optimization method based on
adaptive estimates of lower-order moments.
129 130 131

Adam updates:

132 133 134 135 136 137 138
$$
moment\_1\_out = \beta_1 * moment\_1 + (1 - \beta_1) * grad \\
moment\_2_\out = \beta_2 * moment\_2 + (1 - \beta_2) * grad * grad \\
learning\_rate = learning\_rate *
                  \frac{\sqrt{1 - \beta_{2\_pow}}}{1 - \beta_{1\_pow}} \\
param\_out = param - learning\_rate * \frac{moment\_1}{\sqrt{moment\_2} + \epsilon}
$$
139 140 141 142 143 144 145 146 147

)DOC");
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(adam, ops::AdamOp, ops::AdamOpMaker);
Q
QI JUN 已提交
148 149 150
REGISTER_OP_CPU_KERNEL(
    adam, ops::AdamOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::AdamOpKernel<paddle::platform::CPUDeviceContext, double>);