op_test_xpu.py 7.6 KB
Newer Older
Q
QingshuChen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import unittest
import warnings
import numpy as np
import random
import six
import struct
import time
import itertools
import collections
from collections import defaultdict

import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.backward import append_backward
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
from paddle.fluid.framework import Program, OpProtoHolder, Variable
from testsuite import create_op, set_input, append_input_output, append_loss_ops
from paddle.fluid import unique_name
from white_list import op_accuracy_white_list, check_shape_white_list, compile_vs_runtime_white_list, no_check_set_white_list
from white_list import op_threshold_white_list, no_grad_set_white_list
from op_test import OpTest, _set_use_system_allocator, get_numeric_gradient


class XPUOpTest(OpTest):
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
T
taixiurong 已提交
47 48 49
        cls.use_xpu = True
        cls.use_mkldnn = False
        super().setUpClass()
Q
QingshuChen 已提交
50 51 52 53 54 55 56 57 58

    @classmethod
    def tearDownClass(cls):
        """Restore random seeds"""

        def is_empty_grad_op(op_type):
            all_op_kernels = core._get_all_register_op_kernels()
            grad_op = op_type + '_grad'
            if grad_op in all_op_kernels.keys():
T
taixiurong 已提交
59 60 61 62
                grad_op_kernels = all_op_kernels[grad_op]
                for grad_op_kernel in grad_op_kernels:
                    if 'XPU' in grad_op_kernel:
                        return False
Q
QingshuChen 已提交
63 64
            return True

T
taixiurong 已提交
65 66 67 68 69
        if cls.dtype == np.float16:
            place = paddle.XPUPlace(0)
            if core.is_float16_supported(place) == False:
                return
        super().tearDownClass()
Q
QingshuChen 已提交
70

T
taixiurong 已提交
71 72 73
    def _get_places(self):
        places = [fluid.XPUPlace(0)]
        return places
Q
QingshuChen 已提交
74 75 76 77 78 79 80 81 82

    def check_output_with_place(self,
                                place,
                                atol=0.001,
                                no_check_set=None,
                                equal_nan=False,
                                check_dygraph=True,
                                inplace_atol=None):
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
T
taixiurong 已提交
83 84 85 86 87 88 89 90 91 92 93
        #xpu not support float64
        if self.dtype == np.float64:
            return
        if place == None:
            place = paddle.XPUPlace(0)

        if self.dtype == np.float16:
            if core.is_float16_supported(place) == False:
                return
        return super().check_output_with_place(
            place, atol, no_check_set, equal_nan, check_dygraph, inplace_atol)
Q
QingshuChen 已提交
94 95 96 97 98 99 100 101 102 103

    def check_grad_with_place(self,
                              place,
                              inputs_to_check,
                              output_names,
                              no_grad_set=None,
                              numeric_grad_delta=0.005,
                              in_place=False,
                              max_relative_error=0.005,
                              user_defined_grads=None,
T
taixiurong 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
                              user_defined_grad_outputs=None,
                              check_dygraph=True,
                              numeric_place=None):
        if place == None:
            place = paddle.XPUPlace(0)

        if self.dtype == np.float64:
            return

        if self.dtype == np.float16:
            if core.is_float16_supported(place) == False:
                return

        if self.dtype == np.float16:
            return super().check_grad_with_place(
                place, inputs_to_check, output_names, no_grad_set,
                numeric_grad_delta, in_place, max_relative_error,
                user_defined_grads, user_defined_grads, check_dygraph)

Q
QingshuChen 已提交
123 124 125 126 127 128 129 130 131 132 133
        a1 = self.get_grad_with_place(
            place, inputs_to_check, output_names, no_grad_set=no_grad_set)
        a2 = self.get_grad_with_place(
            place, inputs_to_check, output_names, no_grad_set=no_grad_set)
        a3 = self.get_grad_with_place(
            paddle.CPUPlace(),
            inputs_to_check,
            output_names,
            no_grad_set=no_grad_set)
        self._assert_is_close(a1, a2, inputs_to_check, 0.00000001,
                              "Gradient Check On two xpu")
134
        self._assert_is_close(a1, a3, inputs_to_check, max_relative_error,
Q
QingshuChen 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
                              "Gradient Check On cpu & xpu")

    def get_grad_with_place(self,
                            place,
                            inputs_to_check,
                            output_names,
                            no_grad_set=None,
                            numeric_grad_delta=0.005,
                            in_place=False,
                            max_relative_error=0.005,
                            user_defined_grads=None,
                            check_dygraph=True):
        self.scope = core.Scope()
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()

        self._check_grad_helper()
        if self.dtype == np.float64 and \
            self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST:
            numeric_grad_delta = 1e-5
            max_relative_error = 1e-7

        cache_list = None
        if hasattr(self, "cache_name_list"):
            cache_list = self.cache_name_list

        # oneDNN numeric gradient should use CPU kernel
        use_onednn = False
        if "use_mkldnn" in op_attrs and op_attrs["use_mkldnn"] == True:
            op_attrs["use_mkldnn"] = False
            use_onednn = True

        self.op = create_op(
            self.scope,
            self.op_type,
            op_inputs,
            op_outputs,
            op_attrs,
            cache_list=cache_list)

        if use_onednn:
            op_attrs["use_mkldnn"] = True

        if no_grad_set is None:
            no_grad_set = set()
        else:
            if (self.op_type not in no_grad_set_white_list.NEED_TO_FIX_OP_LIST
                ) and (
                    self.op_type not in no_grad_set_white_list.NOT_CHECK_OP_LIST
                ) and (not self.is_bfloat16_op()):
                raise AssertionError("no_grad_set must be None, op_type is " +
                                     self.op_type + " Op.")

        for input_to_check in inputs_to_check:
            set_input(self.scope, self.op, self.inputs, place)
            tensor_to_check = self.scope.find_var(input_to_check).get_tensor()
            tensor_size = six.moves.reduce(lambda a, b: a * b,
                                           tensor_to_check.shape(), 1)
            if tensor_size < 100:
                self.__class__.input_shape_is_large = False

        if not type(output_names) is list:
            output_names = [output_names]

        analytic_grads = self._get_gradient(inputs_to_check, place,
                                            output_names, no_grad_set)
        return analytic_grads