conv_transpose_mkldnn_op.cc 10.2 KB
Newer Older
J
Jacek Czaja 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include "boost/optional.hpp"
J
Jacek Czaja 已提交
16 17 18
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/malloc.h"
19
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
#include "paddle/fluid/platform/mkldnn_reuse.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using framework::DataLayout;

template <typename T>
class ConvTransposeMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

    const bool is_test = ctx.Attr<bool>("is_test");
    PADDLE_ENFORCE(
        is_test == true,
        "ConvTransposeMKLDNN works only for inference!. Set is_test = True");

    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");

49 50
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input tensor");
A
Adam 已提交
51
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
52 53 54 55
                      "Wrong format set for Input tensor");

    PADDLE_ENFORCE_EQ(filter->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Filter tensor");
A
Adam 已提交
56
    PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
57 58 59 60 61 62
                      "Wrong format set for Filter tensor");

    PADDLE_ENFORCE_EQ(input->dims().size(), 4,
                      "Input must be with 4 dimensions, i.e. NCHW");
    PADDLE_ENFORCE_EQ(filter->dims().size(), 4,
                      "Filter must be with 4 dimensions, i.e. OIHW");
J
Jacek Czaja 已提交
63 64

    if (bias) {
65 66
      PADDLE_ENFORCE_EQ(bias->layout(), DataLayout::kMKLDNN,
                        "Wrong layout set for Bias tensor");
A
Adam 已提交
67
      PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::undef,
68 69 70 71
                        "Wrong format set for Bias tensor");

      PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
                        "Bias must only have 1 dimension, i.e. X");
J
Jacek Czaja 已提交
72 73
    }

A
Adam 已提交
74 75 76 77 78 79 80 81 82
    std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
    std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

    std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

    std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
    std::vector<int64_t> dilations(begin(dilations_temp), end(dilations_temp));

J
Jacek Czaja 已提交
83
    int groups = ctx.Attr<int>("groups");
84 85 86 87 88 89 90 91
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");

    auto input_dims = input->dims();
    auto data_dims = framework::slice_ddim(input_dims, 2, input_dims.size());
    auto filter_dims = filter->dims();
    auto filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());

A
Adam 已提交
92
    auto ksize = framework::vectorize(filter_data_dims);
93 94 95

    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             data_dims, strides, ksize);
J
Jacek Czaja 已提交
96 97 98 99 100 101 102 103

    PADDLE_ENFORCE(
        dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();

A
Adam 已提交
104 105 106
    auto src_tz = paddle::framework::vectorize<int64_t>(input->dims());
    auto iohw_weights_tz =
        paddle::framework::vectorize<int64_t>(filter->dims());
107 108
    auto weights_tz = iohw_weights_tz;

J
Jacek Czaja 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    // IOHW -> OIHW
    weights_tz[0] = iohw_weights_tz[1];
    weights_tz[1] = iohw_weights_tz[0];

    // Custom Reorder from IOHW to OIHW
    auto iohw2oihw_reorder =
        [&iohw_weights_tz](const T* filter_data) -> std::shared_ptr<T> {
      int o = iohw_weights_tz[1];
      int c = iohw_weights_tz[0];
      int h = iohw_weights_tz[2];
      int w = iohw_weights_tz[3];
      std::shared_ptr<T> reordered_filter_data(new T[o * c * h * w](),
                                               std::default_delete<T[]>());
      for (int i = 0; i < c; ++i) {
        for (int j = 0; j < o; ++j) {
          int in_offset = j * h * w + i * o * h * w;
          int out_offset = j * c * h * w + i * h * w;
          std::memcpy(&(reordered_filter_data.get())[out_offset],
                      &filter_data[in_offset], h * w * sizeof(T));
        }
      }

      return reordered_filter_data;
    };

    int g = std::max(groups, 1);
    if (g > 1) {
      int o = weights_tz[0];
      int i = weights_tz[1];
      int h = weights_tz[2];
      int w = weights_tz[3];
      weights_tz.resize(5);
      weights_tz[0] = g;
      weights_tz[1] = o / g;
      weights_tz[2] = i;
      weights_tz[3] = h;
      weights_tz[4] = w;
    }
A
Adam 已提交
147
    auto dst_tz = paddle::framework::vectorize<int64_t>(output->dims());
J
Jacek Czaja 已提交
148 149

    // Get unique name for storing MKLDNN primitives
H
hong 已提交
150

151
    const std::string key =
H
hong 已提交
152
        platform::CreateKey(src_tz, ctx.OutputName("Output"));
J
Jacek Czaja 已提交
153 154 155 156 157

    std::vector<mkldnn::primitive> pipeline;

    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
158 159 160
    auto user_weights_md = platform::MKLDNNMemDesc(
        {weights_tz}, platform::MKLDNNGetDataType<T>(),
        (g == 1) ? MKLDNNMemoryFormat::oihw : MKLDNNMemoryFormat::goihw);
J
Jacek Czaja 已提交
161 162 163 164 165

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
166
    auto chosen_memory_format = MKLDNNMemoryFormat::any;
167 168 169
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
    float fuse_alpha = ctx.Attr<float>("fuse_alpha");
    float fuse_beta = ctx.Attr<float>("fuse_beta");
J
Jacek Czaja 已提交
170 171 172 173 174

    auto src_md = platform::MKLDNNMemDesc(
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
    auto weights_md = platform::MKLDNNMemDesc(
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
A
Adam 已提交
175
    std::vector<int64_t> bias_tz;
J
Jacek Czaja 已提交
176 177 178
    auto dst_md = platform::MKLDNNMemDesc(
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);

179
    platform::ConvTransposeMKLDNNHandler handler(dev_ctx, mkldnn_engine, key);
J
Jacek Czaja 已提交
180 181 182 183 184 185 186
    // create a deconv(conv transpose) primitive descriptor and save it for
    // usage in backward
    std::shared_ptr<mkldnn::deconvolution_forward::primitive_desc>
        conv_transpose_pd;
    auto fwd_prop_kind = is_test ? mkldnn::prop_kind::forward_inference
                                 : mkldnn::prop_kind::forward_training;
    if (bias) {
A
Adam 已提交
187
      bias_tz = paddle::framework::vectorize<int64_t>(bias->dims());
J
Jacek Czaja 已提交
188
      auto bias_md = platform::MKLDNNMemDesc(
189
          bias_tz, platform::MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::x);
190
      conv_transpose_pd = handler.AcquireConvolutionPrimitiveDescriptor(
J
Jacek Czaja 已提交
191
          src_md, weights_md, bias_md, dst_md, strides, paddings, mkldnn_engine,
192
          fuse_activation, fuse_alpha, fuse_beta, false, fwd_prop_kind);
J
Jacek Czaja 已提交
193
    } else {
194 195
      conv_transpose_pd = handler.AcquireConvolutionPrimitiveDescriptor(
          src_md, weights_md, boost::none, dst_md, strides, paddings,
196 197
          mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta, false,
          fwd_prop_kind);
J
Jacek Czaja 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
    }

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p = handler.AcquireSrcMemory(
        user_src_md, platform::to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, platform::to_void_cast<T>(filter_data),
        is_test ? iohw2oihw_reorder : platform::user_function());

    // create reorder primitive if the input format is not the preferred one
    auto src_memory_p =
        handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
    auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
        user_weights_memory_p, pipeline, is_test);

213 214
    auto output_data =
        output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
A
Adam 已提交
215
    auto dst_memory_p = handler.AcquireDstMemoryFromPrimitive(
J
Jacek Czaja 已提交
216 217
        platform::to_void_cast<T>(output_data));

A
Adam 已提交
218 219 220
    auto conv_p = handler.AcquireConvolution();

    mkldnn::stream astream(mkldnn_engine);
J
Jacek Czaja 已提交
221 222
    if (bias) {
      const T* bias_data = bias->data<T>();
223 224
      auto user_bias_md = platform::MKLDNNMemDesc(
          {bias_tz}, platform::MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::x);
J
Jacek Czaja 已提交
225 226 227 228 229
      auto user_bias_memory_p = handler.AcquireBiasMemory(
          user_bias_md, platform::to_void_cast<T>(bias_data));

      auto bias_memory_p =
          handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
A
Adam 已提交
230 231 232 233 234

      conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                {MKLDNN_ARG_BIAS, *bias_memory_p},
                                {MKLDNN_ARG_DST, *dst_memory_p}});
J
Jacek Czaja 已提交
235
    } else {
A
Adam 已提交
236 237 238
      conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                {MKLDNN_ARG_DST, *dst_memory_p}});
J
Jacek Czaja 已提交
239
    }
A
Adam 已提交
240
    astream.wait();
J
Jacek Czaja 已提交
241

242 243
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(platform::GetMKLDNNFormat(*dst_memory_p));
J
Jacek Czaja 已提交
244 245 246 247 248 249 250 251 252 253
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(conv2d_transpose, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::ConvTransposeMKLDNNOpKernel<float>);