downpour_worker.cc 27.0 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/device_worker.h"
16
#include "paddle/fluid/framework/device_worker_factory.h"
17
#include "paddle/fluid/platform/cpu_helper.h"
18
#include "paddle/fluid/string/string_helper.h"
19

20 21 22 23 24
#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

25 26 27
namespace paddle {
namespace framework {

28
void DownpourWorker::Initialize(const TrainerDesc& desc) {
29
  param_ = desc.downpour_param();
D
dongdaxiang 已提交
30
  for (int i = 0; i < param_.sparse_table_size(); ++i) {
31 32 33 34
    uint64_t table_id =
        static_cast<uint64_t>(param_.sparse_table(i).table_id());
    TableParameter table = param_.sparse_table(i);
    sparse_key_names_[table_id].resize(table.sparse_key_name_size());
D
dongdaxiang 已提交
35
    for (int j = 0; j < table.sparse_key_name_size(); ++j) {
36 37 38
      sparse_key_names_[table_id][j] = table.sparse_key_name(j);
    }
    sparse_value_names_[table_id].resize(table.sparse_value_name_size());
D
dongdaxiang 已提交
39
    for (int j = 0; j < table.sparse_value_name_size(); ++j) {
40 41 42
      sparse_value_names_[table_id][j] = table.sparse_value_name(j);
    }
    sparse_grad_names_[table_id].resize(table.sparse_grad_name_size());
D
dongdaxiang 已提交
43
    for (int j = 0; j < table.sparse_grad_name_size(); ++j) {
44 45
      sparse_grad_names_[table_id][j] = table.sparse_grad_name(j);
    }
46
    label_var_name_[table_id] = table.label_var_name();
47 48
  }

D
dongdaxiang 已提交
49
  for (int i = 0; i < param_.dense_table_size(); ++i) {
50 51 52
    uint64_t table_id = static_cast<uint64_t>(param_.dense_table(i).table_id());
    auto table = param_.dense_table(i);
    dense_value_names_[table_id].resize(table.dense_value_name_size());
D
dongdaxiang 已提交
53
    for (int j = 0; j < table.dense_value_name_size(); ++j) {
54 55 56
      dense_value_names_[table_id][j] = table.dense_value_name(j);
    }
    dense_grad_names_[table_id].resize(table.dense_grad_name_size());
D
dongdaxiang 已提交
57
    for (int j = 0; j < table.dense_grad_name_size(); ++j) {
58 59 60 61 62
      dense_grad_names_[table_id][j] = table.dense_grad_name(j);
    }
  }

  skip_ops_.resize(param_.skip_ops_size());
D
dongdaxiang 已提交
63
  for (int i = 0; i < param_.skip_ops_size(); ++i) {
64 65
    skip_ops_[i] = param_.skip_ops(i);
  }
66

67 68 69 70
  for (int i = 0; i < param_.stat_var_names_size(); ++i) {
    stat_var_name_map_[param_.stat_var_names(i)] = 1;
  }

71 72 73
  need_to_push_sparse_ = param_.push_sparse();
  need_to_push_dense_ = param_.push_dense();

74
  fleet_ptr_ = FleetWrapper::GetInstance();
D
dongdaxiang 已提交
75
  fetch_config_ = desc.fetch_config();
76
  use_cvm_ = desc.use_cvm();
77
  scale_datanorm_ = desc.scale_datanorm();
T
Thunderbrook 已提交
78
  dump_slot_ = desc.dump_slot();
79 80 81 82
  dump_fields_.resize(desc.dump_fields_size());
  for (int i = 0; i < desc.dump_fields_size(); ++i) {
    dump_fields_[i] = desc.dump_fields(i);
  }
83
  adjust_ins_weight_config_ = desc.adjust_ins_weight_config();
84 85
}

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
void DownpourWorker::SetChannelWriter(ChannelObject<std::string>* queue) {
  writer_.Reset(queue);
}

void DownpourWorker::SetNeedDump(bool need_dump_field) {
  need_dump_field_ = need_dump_field;
}

template <typename T>
std::string PrintLodTensorType(LoDTensor* tensor, int64_t start, int64_t end) {
  auto count = tensor->numel();
  if (start < 0 || end > count) {
    VLOG(3) << "access violation";
    return "access violation";
  }
  std::ostringstream os;
  for (int64_t i = start; i < end; i++) {
    os << ":" << tensor->data<T>()[i];
  }
  return os.str();
}

std::string PrintLodTensorIntType(LoDTensor* tensor, int64_t start,
                                  int64_t end) {
  auto count = tensor->numel();
  if (start < 0 || end > count) {
    VLOG(3) << "access violation";
    return "access violation";
  }
  std::ostringstream os;
  for (int64_t i = start; i < end; i++) {
    os << ":" << static_cast<uint64_t>(tensor->data<int64_t>()[i]);
  }
  return os.str();
}

std::string PrintLodTensor(LoDTensor* tensor, int64_t start, int64_t end) {
  std::string out_val;
  if (tensor->type() == proto::VarType::FP32) {
    out_val = PrintLodTensorType<float>(tensor, start, end);
  } else if (tensor->type() == proto::VarType::INT64) {
    out_val = PrintLodTensorIntType(tensor, start, end);
  } else if (tensor->type() == proto::VarType::FP64) {
    out_val = PrintLodTensorType<double>(tensor, start, end);
  } else {
    out_val = "unsupported type";
  }
  return out_val;
}

std::pair<int64_t, int64_t> GetTensorBound(LoDTensor* tensor, int index) {
  auto& dims = tensor->dims();
  if (tensor->lod().size() != 0) {
    auto& lod = tensor->lod()[0];
    return {lod[index] * dims[1], lod[index + 1] * dims[1]};
  } else {
    return {index * dims[1], (index + 1) * dims[1]};
  }
}

bool CheckValidOutput(LoDTensor* tensor, int batch_size) {
  auto& dims = tensor->dims();
  if (dims.size() != 2) return false;
  if (tensor->lod().size() != 0) {
    auto& lod = tensor->lod()[0];
    if (lod.size() != batch_size + 1) {
      return false;
    }
  } else {
    if (dims[0] != batch_size) {
      return false;
    }
  }
  return true;
}

162
void DownpourWorker::CollectLabelInfo(size_t table_idx) {
H
heqiaozhi 已提交
163
  uint64_t table_id = static_cast<uint64_t>(
164
      param_.program_config(0).pull_sparse_table_id(table_idx));
165

H
heqiaozhi 已提交
166 167 168 169 170 171 172
  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
173 174 175
  auto& feature = features_[table_id];
  auto& feature_label = feature_labels_[table_id];
  feature_label.resize(feature.size());
176
  Variable* var = thread_scope_->FindVar(label_var_name_[table_id]);
177 178 179
  LoDTensor* tensor = var->GetMutable<LoDTensor>();
  int64_t* label_ptr = tensor->data<int64_t>();

D
dongdaxiang 已提交
180
  size_t global_index = 0;
181
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
182 183
    VLOG(3) << "sparse_key_names_[" << i
            << "]: " << sparse_key_names_[table_id][i];
184
    Variable* fea_var = thread_scope_->FindVar(sparse_key_names_[table_id][i]);
185 186 187
    if (fea_var == nullptr) {
      continue;
    }
188
    LoDTensor* tensor = fea_var->GetMutable<LoDTensor>();
189 190
    CHECK(tensor != nullptr) << "tensor of var "
                             << sparse_key_names_[table_id][i] << " is null";
191
    int64_t* ids = tensor->data<int64_t>();
D
dongdaxiang 已提交
192
    size_t fea_idx = 0;
193
    // tensor->lod()[0].size() == batch_size + 1
194 195
    for (auto lod_idx = 1u; lod_idx < tensor->lod()[0].size(); ++lod_idx) {
      for (; fea_idx < tensor->lod()[0][lod_idx]; ++fea_idx) {
196 197 198 199
        // should be skipped feasign defined in protobuf
        if (ids[fea_idx] == 0u) {
          continue;
        }
200 201
        feature_label[global_index++] =
            static_cast<float>(label_ptr[lod_idx - 1]);
202 203 204 205 206 207 208 209
      }
    }
  }
  CHECK(global_index == feature.size())
      << "expect fea info size:" << feature.size() << " real:" << global_index;
}

void DownpourWorker::FillSparseValue(size_t table_idx) {
H
heqiaozhi 已提交
210
  uint64_t table_id = static_cast<uint64_t>(
211
      param_.program_config(0).pull_sparse_table_id(table_idx));
H
heqiaozhi 已提交
212 213 214 215 216 217 218 219

  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
220 221 222 223

  auto& fea_value = feature_values_[table_id];
  auto fea_idx = 0u;

X
xjqbest 已提交
224
  std::vector<float> init_value(table.fea_dim());
225 226 227 228
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
    std::string slot_name = sparse_key_names_[table_id][i];
    std::string emb_slot_name = sparse_value_names_[table_id][i];
    Variable* var = thread_scope_->FindVar(slot_name);
229 230 231
    if (var == nullptr) {
      continue;
    }
232
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
233
    CHECK(tensor != nullptr) << "tensor of var " << slot_name << " is null";
234 235 236 237 238 239 240 241 242 243
    int64_t* ids = tensor->data<int64_t>();
    int len = tensor->numel();
    Variable* var_emb = thread_scope_->FindVar(emb_slot_name);
    LoDTensor* tensor_emb = var_emb->GetMutable<LoDTensor>();
    float* ptr = tensor_emb->mutable_data<float>({len, table.emb_dim()},
                                                 platform::CPUPlace());
    memset(ptr, 0, sizeof(float) * len * table.emb_dim());
    auto& tensor_lod = tensor->lod()[0];
    LoD data_lod{tensor_lod};
    tensor_emb->set_lod(data_lod);
244 245 246 247 248 249 250 251

    bool is_nid = (adjust_ins_weight_config_.need_adjust() &&
                   adjust_ins_weight_config_.nid_slot() == emb_slot_name);
    if (is_nid) {
      nid_show_.clear();
    }
    int nid_ins_index = 0;

D
dongdaxiang 已提交
252
    for (int index = 0; index < len; ++index) {
253 254 255 256
      if (use_cvm_) {
        if (ids[index] == 0u) {
          memcpy(ptr + table.emb_dim() * index, init_value.data(),
                 sizeof(float) * table.emb_dim());
257 258 259 260
          if (is_nid) {
            nid_show_.push_back(-1);
            ++nid_ins_index;
          }
261 262 263 264
          continue;
        }
        memcpy(ptr + table.emb_dim() * index, fea_value[fea_idx].data(),
               sizeof(float) * table.emb_dim());
265 266 267 268
        if (is_nid && index == tensor->lod()[0][nid_ins_index]) {
          nid_show_.push_back(fea_value[fea_idx][0]);
          ++nid_ins_index;
        }
269 270 271 272 273
        fea_idx++;
      } else {
        if (ids[index] == 0u) {
          memcpy(ptr + table.emb_dim() * index, init_value.data() + 2,
                 sizeof(float) * table.emb_dim());
274 275 276 277
          if (is_nid) {
            nid_show_.push_back(-1);
            ++nid_ins_index;
          }
278 279 280
          continue;
        }
        memcpy(ptr + table.emb_dim() * index, fea_value[fea_idx].data() + 2,
281
               sizeof(float) * table.emb_dim());
282 283 284 285
        if (is_nid && index == tensor->lod()[0][nid_ins_index]) {
          nid_show_.push_back(fea_value[fea_idx][0]);
          ++nid_ins_index;
        }
286
        fea_idx++;
287 288 289 290 291
      }
    }
  }
}

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
void DownpourWorker::AdjustInsWeight() {
#ifdef _LINUX
  // check var and tensor not null
  if (!adjust_ins_weight_config_.need_adjust()) {
    VLOG(0) << "need_adjust=false, skip adjust ins weight";
    return;
  }
  Variable* nid_var =
      thread_scope_->FindVar(adjust_ins_weight_config_.nid_slot());
  if (nid_var == nullptr) {
    VLOG(0) << "nid slot var " << adjust_ins_weight_config_.nid_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  LoDTensor* nid_tensor = nid_var->GetMutable<LoDTensor>();
  if (nid_tensor == nullptr) {
    VLOG(0) << "tensor of nid slot var " << adjust_ins_weight_config_.nid_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  Variable* ins_weight_var =
      thread_scope_->FindVar(adjust_ins_weight_config_.ins_weight_slot());
  if (ins_weight_var == nullptr) {
    VLOG(0) << "ins weight var " << adjust_ins_weight_config_.ins_weight_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  LoDTensor* ins_weight_tensor = ins_weight_var->GetMutable<LoDTensor>();
  if (ins_weight_tensor == nullptr) {
    VLOG(0) << "tensor of ins weight tensor "
            << adjust_ins_weight_config_.ins_weight_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }

  float* ins_weights = ins_weight_tensor->data<float>();
  size_t len = ins_weight_tensor->numel();  // len = batch size
  // here we assume nid_show slot only has one feasign in each instance
  CHECK(len == nid_show_.size()) << "ins_weight size should be equal to "
                                 << "nid_show size, " << len << " vs "
                                 << nid_show_.size();
  float nid_adjw_threshold = adjust_ins_weight_config_.nid_adjw_threshold();
  float nid_adjw_ratio = adjust_ins_weight_config_.nid_adjw_ratio();
  int64_t nid_adjw_num = 0;
  double nid_adjw_weight = 0.0;
  size_t ins_index = 0;
  for (int i = 0; i < len; ++i) {
    float nid_show = nid_show_[i];
    VLOG(3) << "nid_show " << nid_show;
    if (nid_show < 0) {
      VLOG(3) << "nid_show < 0, continue";
      continue;
    }
    float ins_weight = 1.0;
    if (nid_show >= 0 && nid_show < nid_adjw_threshold) {
      ins_weight = log(M_E +
                       (nid_adjw_threshold - nid_show) / nid_adjw_threshold *
                           nid_adjw_ratio);
      // count nid adjw insnum and weight
      ++nid_adjw_num;
      nid_adjw_weight += ins_weight;
      // choose large ins weight
      VLOG(3) << "ins weight new " << ins_weight << ", ins weight origin "
              << ins_weights[ins_index];
      if (ins_weight > ins_weights[ins_index]) {
        VLOG(3) << "ins " << ins_index << " weight changes to " << ins_weight;
        ins_weights[ins_index] = ins_weight;
      }
      ++ins_index;
    }
  }
  VLOG(3) << "nid adjw info: total_adjw_num: " << nid_adjw_num
          << ", avg_adjw_weight: " << nid_adjw_weight;
#endif
}

368 369 370
void DownpourWorker::TrainFilesWithProfiler() {
  VLOG(3) << "Begin to train files with profiler";
  platform::SetNumThreads(1);
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
  device_reader_->Start();
  std::vector<double> op_total_time;
  std::vector<std::string> op_name;
  for (auto& op : ops_) {
    bool need_skip = false;
    for (auto t = 0u; t < skip_ops_.size(); ++t) {
      if (op->Type().find(skip_ops_[t]) != std::string::npos) {
        need_skip = true;
        break;
      }
    }
    if (!need_skip) {
      op_name.push_back(op->Type());
    }
  }

  VLOG(3) << "op name size: " << op_name.size();
  op_total_time.resize(op_name.size());
  for (size_t i = 0; i < op_total_time.size(); ++i) {
    op_total_time[i] = 0.0;
  }
  platform::Timer timeline;
  double total_time = 0.0;
  double read_time = 0.0;
  double pull_sparse_time = 0.0;
396
  double adjust_ins_weight_time = 0.0;
397 398 399 400 401 402
  double collect_label_time = 0.0;
  double fill_sparse_time = 0.0;
  double push_sparse_time = 0.0;
  double push_dense_time = 0.0;
  int cur_batch;
  int batch_cnt = 0;
D
dongdaxiang 已提交
403
  uint64_t total_inst = 0;
404 405 406 407 408 409
  timeline.Start();
  while ((cur_batch = device_reader_->Next()) > 0) {
    timeline.Pause();
    read_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();
    VLOG(3) << "program config size: " << param_.program_config_size();
D
dongdaxiang 已提交
410
    for (int i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
411 412 413 414
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
415 416 417
      for (auto j : param_.sparse_table()) {
        if (j.table_id() == tid) {
          table = j;
418 419 420 421 422 423 424 425 426
          break;
        }
      }
      timeline.Start();
      fleet_ptr_->PullSparseVarsSync(*thread_scope_, tid,
                                     sparse_key_names_[tid], &features_[tid],
                                     &feature_values_[tid], table.fea_dim());
      timeline.Pause();
      pull_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
427
      total_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
428
      timeline.Start();
429 430 431
      CollectLabelInfo(i);
      timeline.Pause();
      collect_label_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
432
      total_time += timeline.ElapsedSec();
433 434 435 436
      timeline.Start();
      FillSparseValue(i);
      timeline.Pause();
      fill_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
437
      total_time += timeline.ElapsedSec();
438 439 440 441 442 443 444 445 446 447
      timeline.Start();
      auto nid_iter = std::find(sparse_value_names_[tid].begin(),
                                sparse_value_names_[tid].end(),
                                adjust_ins_weight_config_.nid_slot());
      if (nid_iter != sparse_value_names_[tid].end()) {
        AdjustInsWeight();
      }
      timeline.Pause();
      adjust_ins_weight_time += timeline.ElapsedSec();
      total_time += timeline.ElapsedSec();
448 449 450 451 452 453 454 455 456 457 458 459 460 461
    }
    VLOG(3) << "Fill sparse value for all sparse table done.";

    int run_op_idx = 0;
    for (auto& op : ops_) {
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        timeline.Start();
462
        VLOG(3) << "Going to run op " << op_name[run_op_idx];
463
        op->Run(*thread_scope_, place_);
464
        VLOG(3) << "Op " << op_name[run_op_idx] << " Finished";
465 466 467 468 469 470
        timeline.Pause();
        op_total_time[run_op_idx++] += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
      }
    }

471
    if (need_to_push_sparse_) {
D
dongdaxiang 已提交
472 473
      for (int i = 0; i < param_.program_config(0).push_sparse_table_id_size();
           ++i) {
474 475 476 477 478 479 480 481
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_sparse_table_id(i));
        TableParameter table;
        for (auto i : param_.sparse_table()) {
          if (i.table_id() == tid) {
            table = i;
            break;
          }
482
        }
483 484 485 486
        timeline.Start();
        fleet_ptr_->PushSparseVarsWithLabelAsync(
            *thread_scope_, tid, features_[tid], feature_labels_[tid],
            sparse_key_names_[tid], sparse_grad_names_[tid], table.emb_dim(),
T
Thunderbrook 已提交
487 488
            &feature_grads_[tid], &push_sparse_status_, cur_batch, use_cvm_,
            dump_slot_);
489 490 491
        timeline.Pause();
        push_sparse_time += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
492
      }
493 494 495
    }

    if (need_to_push_dense_) {
496
      timeline.Start();
D
dongdaxiang 已提交
497 498
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
499 500 501
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        fleet_ptr_->PushDenseVarsAsync(
502 503
            *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_,
            scale_datanorm_, cur_batch);
504
      }
505
      timeline.Pause();
506
      push_dense_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
507
      total_time += timeline.ElapsedSec();
508 509 510 511 512 513 514 515 516
      VLOG(3) << "push sparse and dense gradient done.";
      int32_t tmp_push_dense_wait_times = -1;
      static uint32_t push_dense_wait_times =
          static_cast<uint32_t>(tmp_push_dense_wait_times);
      if (push_dense_status_.size() >= push_dense_wait_times) {
        for (auto& t : push_dense_status_) {
          t.wait();
        }
        push_dense_status_.resize(0);
517 518
      }

519 520
      if (tmp_push_dense_wait_times == -1) {
        push_dense_status_.resize(0);
521 522 523
      }
    }

524
    if (need_to_push_sparse_) {
525 526 527
      int32_t tmp_push_sparse_wait_times = -1;
      static uint32_t push_sparse_wait_times =
          static_cast<uint32_t>(tmp_push_sparse_wait_times);
528 529 530 531 532 533
      if (push_sparse_status_.size() >= push_sparse_wait_times) {
        for (auto& t : push_sparse_status_) {
          t.wait();
        }
        push_sparse_status_.resize(0);
      }
534

535 536 537
      if (tmp_push_sparse_wait_times == -1) {
        push_sparse_status_.resize(0);
      }
538

539 540 541
      VLOG(3) << "going to increase thread version";
      VLOG(3) << "push dense table id size: "
              << param_.program_config(0).push_dense_table_id_size();
542 543 544
    }

    if (need_to_push_dense_) {
D
dongdaxiang 已提交
545 546
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
547 548 549 550
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
      }
551 552
    }

D
dongdaxiang 已提交
553
    PrintFetchVars();
554
    thread_scope_->DropKids();
D
dongdaxiang 已提交
555
    total_inst += cur_batch;
556 557 558 559 560
    ++batch_cnt;

    if (thread_id_ == 0) {
      // should be configured here
      if (batch_cnt > 0 && batch_cnt % 100 == 0) {
561 562
        double op_sum_time = 0;
        std::unordered_map<std::string, double> op_to_time;
563 564 565
        for (size_t i = 0; i < op_total_time.size(); ++i) {
          fprintf(stderr, "op_name:[%zu][%s], op_mean_time:[%fs]\n", i,
                  op_name[i].c_str(), op_total_time[i] / batch_cnt);
566 567 568 569 570 571 572 573 574
          if (op_to_time.find(op_name[i]) == op_to_time.end()) {
            op_to_time[op_name[i]] = 0.0;
          }
          op_to_time[op_name[i]] += op_total_time[i];
          op_sum_time += op_total_time[i];
        }
        for (auto& i : op_to_time) {
          fprintf(stderr, "op [%s] run total time: [%f]ms\n", i.first.c_str(),
                  i.second / batch_cnt);
575
        }
576 577 578 579 580 581 582 583 584 585 586
        fprintf(stderr, "op run total time: %fs\n", op_sum_time / batch_cnt);
        fprintf(stderr, "train total time: %fs\n", total_time / batch_cnt);
        fprintf(stderr, "pull sparse time: %fs\n",
                pull_sparse_time / batch_cnt);
        fprintf(stderr, "fill sparse time: %fs\n",
                fill_sparse_time / batch_cnt);
        fprintf(stderr, "push sparse time: %fs\n",
                push_sparse_time / batch_cnt);
        fprintf(stderr, "push dense time: %fs\n", push_dense_time / batch_cnt);
        fprintf(stderr, "collect label time: %fs\n",
                collect_label_time / batch_cnt);
587 588
        fprintf(stderr, "adjust ins weight time: %fs\n",
                adjust_ins_weight_time / batch_cnt);
589 590
        fprintf(stderr, "mean read time: %fs\n", read_time / batch_cnt);
        fprintf(stderr, "IO percent: %f\n", read_time / total_time * 100);
591
        fprintf(stderr, "op run percent: %f\n", op_sum_time / total_time * 100);
D
dongdaxiang 已提交
592 593
        fprintf(stderr, "pull sparse time percent: %f\n",
                pull_sparse_time / total_time * 100);
594 595
        fprintf(stderr, "adjust ins weight time percent: %f\n",
                adjust_ins_weight_time / total_time * 100);
D
dongdaxiang 已提交
596 597 598 599 600 601 602 603
        fprintf(stderr, "collect label time percent: %f\n",
                collect_label_time / total_time * 100);
        fprintf(stderr, "fill sparse time percent: %f\n",
                fill_sparse_time / total_time * 100);
        fprintf(stderr, "push sparse time percent: %f\n",
                push_sparse_time / total_time * 100);
        fprintf(stderr, "push dense time percent: %f\n",
                push_dense_time / total_time * 100);
D
dongdaxiang 已提交
604
        fprintf(stderr, "%6.2f instances/s\n", total_inst / total_time);
605 606
      }
    }
D
dongdaxiang 已提交
607
    timeline.Start();
608
  }
609 610
}

611
void DownpourWorker::TrainFiles() {
D
dongdaxiang 已提交
612
  VLOG(3) << "Begin to train files";
613
  platform::SetNumThreads(1);
614
  device_reader_->Start();
615 616
  int batch_cnt = 0;
  int cur_batch;
617
  while ((cur_batch = device_reader_->Next()) > 0) {
618
    // pull sparse here
D
dongdaxiang 已提交
619
    for (int i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
H
heqiaozhi 已提交
620 621 622 623
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
624 625 626
      for (auto j : param_.sparse_table()) {
        if (j.table_id() == tid) {
          table = j;
H
heqiaozhi 已提交
627 628 629 630 631 632
          break;
        }
      }
      fleet_ptr_->PullSparseVarsSync(*thread_scope_, tid,
                                     sparse_key_names_[tid], &features_[tid],
                                     &feature_values_[tid], table.fea_dim());
633 634
      CollectLabelInfo(i);
      FillSparseValue(i);
635 636 637 638 639 640
      auto nid_iter = std::find(sparse_value_names_[tid].begin(),
                                sparse_value_names_[tid].end(),
                                adjust_ins_weight_config_.nid_slot());
      if (nid_iter != sparse_value_names_[tid].end()) {
        AdjustInsWeight();
      }
641
    }
D
dongdaxiang 已提交
642
    VLOG(3) << "fill sparse value for all sparse table done.";
643 644 645

    // do computation here
    for (auto& op : ops_) {
646 647 648 649 650 651 652 653 654 655
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        op->Run(*thread_scope_, place_);
      }
656 657
    }

658 659
    if (need_to_push_sparse_) {
      // push gradients here
D
dongdaxiang 已提交
660 661
      for (int i = 0; i < param_.program_config(0).push_sparse_table_id_size();
           ++i) {
662 663 664 665 666 667 668 669
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_sparse_table_id(i));
        TableParameter table;
        for (auto i : param_.sparse_table()) {
          if (i.table_id() == tid) {
            table = i;
            break;
          }
H
heqiaozhi 已提交
670
        }
671 672 673
        fleet_ptr_->PushSparseVarsWithLabelAsync(
            *thread_scope_, tid, features_[tid], feature_labels_[tid],
            sparse_key_names_[tid], sparse_grad_names_[tid], table.emb_dim(),
T
Thunderbrook 已提交
674 675
            &feature_grads_[tid], &push_sparse_status_, cur_batch, use_cvm_,
            dump_slot_);
H
heqiaozhi 已提交
676
      }
677 678
    }

679
    if (need_to_push_dense_) {
D
dongdaxiang 已提交
680 681
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
682 683 684
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        fleet_ptr_->PushDenseVarsAsync(
685 686
            *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_,
            scale_datanorm_, cur_batch);
687 688 689
      }

      VLOG(3) << "push dense gradient done.";
690

691 692 693 694 695
      // the following code should be more precise and clean
      // TODO(guru4elephant)
      int32_t tmp_push_dense_wait_times = -1;
      static uint32_t push_dense_wait_times =
          static_cast<uint32_t>(tmp_push_dense_wait_times);
696

697 698 699 700 701
      if (push_dense_status_.size() >= push_dense_wait_times) {
        for (auto& t : push_dense_status_) {
          t.wait();
        }
        push_dense_status_.resize(0);
702 703
      }

704 705 706
      if (tmp_push_dense_wait_times == -1) {
        push_dense_status_.resize(0);
      }
707 708
    }

709 710 711 712 713 714 715 716 717 718
    if (need_to_push_sparse_) {
      VLOG(3) << "push sparse gradient done.";
      int32_t tmp_push_sparse_wait_times = -1;
      static uint32_t push_sparse_wait_times =
          static_cast<uint32_t>(tmp_push_sparse_wait_times);
      if (push_sparse_status_.size() >= push_sparse_wait_times) {
        for (auto& t : push_sparse_status_) {
          t.wait();
        }
        push_sparse_status_.resize(0);
719 720
      }

721 722 723
      if (tmp_push_sparse_wait_times == -1) {
        push_sparse_status_.resize(0);
      }
724 725
    }

726
    if (need_to_push_dense_) {
D
dongdaxiang 已提交
727 728
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
729 730 731 732
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
      }
733
    }
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
    if (need_dump_field_) {
      int batch_size = device_reader_->GetCurBatchSize();
      std::vector<std::string> ars(batch_size);
      for (auto& ar : ars) {
        ar.clear();
      }
      auto& ins_id_vec = device_reader_->GetInsIdVec();
      auto& ins_content_vec = device_reader_->GetInsContentVec();
      for (size_t i = 0; i < ins_id_vec.size(); i++) {
        ars[i] += ins_id_vec[i];
        ars[i] = ars[i] + "\t" + ins_content_vec[i];
      }
      for (auto& field : dump_fields_) {
        Variable* var = thread_scope_->FindVar(field);
        if (var == nullptr) {
          continue;
        }
        LoDTensor* tensor = var->GetMutable<LoDTensor>();
        if (!CheckValidOutput(tensor, batch_size)) {
          continue;
        }
        for (int i = 0; i < batch_size; ++i) {
          auto output_dim = tensor->dims()[1];
          std::string output_dimstr =
              boost::lexical_cast<std::string>(output_dim);
          ars[i] = ars[i] + "\t" + field + ":" + output_dimstr;
          auto bound = GetTensorBound(tensor, i);
          ars[i] += PrintLodTensor(tensor, bound.first, bound.second);
        }
      }
      // #pragma omp parallel for
      for (size_t i = 0; i < ars.size(); i++) {
        if (ars[i].length() == 0) {
          continue;
        }
        writer_ << ars[i];
      }
    }
772

D
dongdaxiang 已提交
773
    PrintFetchVars();
774 775 776
    thread_scope_->DropKids();
    ++batch_cnt;
  }
777 778 779
  if (need_dump_field_) {
    writer_.Flush();
  }
780 781 782 783
}

}  // end namespace framework
}  // end namespace paddle