elementwise_op.cc 9.8 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
    http://www.apache.org/licenses/LICENSE-2.0
N
nhzlx 已提交
8 9 10 11 12 13 14 15

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
16
#include "paddle/fluid/inference/tensorrt/plugin/elementwise_op_plugin.h"
N
nhzlx 已提交
17 18 19 20 21

namespace paddle {
namespace inference {
namespace tensorrt {

22 23 24 25 26 27 28 29 30 31 32 33 34
static bool CheckDims(const nvinfer1::Dims& dims_x,
                      const nvinfer1::Dims& dims_y) {
  if (dims_x.nbDims != dims_y.nbDims) {
    return false;
  }
  for (int i = 0; i < dims_x.nbDims; i++) {
    if (dims_x.d[i] != dims_y.d[i]) {
      return false;
    }
  }
  return true;
}

N
nhzlx 已提交
35 36 37 38 39 40 41
class ElementwiseWeightOpConverter : public OpConverter {
 public:
  ElementwiseWeightOpConverter() {}
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
    // Here the two nullptr looks strange, that's because the
    // framework::OpDesc's constructor is strange.
42
    nvinfer1::ILayer* layer = nullptr;
N
nhzlx 已提交
43
    framework::OpDesc op_desc(op, nullptr);
44
    VLOG(3) << "Convert a fluid elementwise op to TensorRT IScaleLayer";
N
nhzlx 已提交
45 46 47 48 49 50 51

    PADDLE_ENFORCE_EQ(op_desc.Input("X").size(), 1);
    PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1);  // Y is a weight
    PADDLE_ENFORCE_EQ(op_desc.Output("Out").size(), 1);

    auto* X = engine_->GetITensor(op_desc.Input("X").front());
    nvinfer1::Dims dims_x = X->getDimensions();
52 53
    PADDLE_ENFORCE(dims_x.nbDims >= 3, "x dims experts 3, but %d is given.",
                   dims_x.nbDims);
N
nhzlx 已提交
54 55 56 57

    auto* Y_v = scope.FindVar(op_desc.Input("Y").front());
    PADDLE_ENFORCE_NOT_NULL(Y_v);
    auto* Y_t = Y_v->GetMutable<framework::LoDTensor>();
58 59 60
    float* weight_data = nullptr;
    weight_data =
        engine_->GetWeightCPUData(op_desc.Input("Y").front(), Y_t, false);
N
nhzlx 已提交
61

N
nhzlx 已提交
62 63
    auto scale_mode = nvinfer1::ScaleMode::kELEMENTWISE;

64
    std::vector<int> dims_y = framework::vectorize2int(Y_t->dims());
N
nhzlx 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    if (static_cast<int>(dims_y.size()) == dims_x.nbDims + 1) {
      if (dims_y[0] == 1) dims_y.erase(dims_y.begin());
    }

    if (static_cast<int>(dims_y.size()) == 1 && dims_y[0] == dims_x.d[0]) {
      scale_mode = nvinfer1::ScaleMode::kCHANNEL;
    } else if (static_cast<int>(dims_y.size()) == dims_x.nbDims &&
               dims_y[0] == dims_x.d[0]) {
      scale_mode = nvinfer1::ScaleMode::kELEMENTWISE;
      for (int i = 1; i < dims_x.nbDims; i++) {
        if (dims_y[i] != dims_x.d[i]) {
          scale_mode = nvinfer1::ScaleMode::kCHANNEL;
          break;
        }
      }
      if (scale_mode == nvinfer1::ScaleMode::kCHANNEL) {
        for (int i = 1; i < dims_x.nbDims; i++) {
          if (dims_y[i] != 1)
            PADDLE_THROW(
                "TensorRT unsupported weight shape for Elementwise op!");
        }
      }
    } else {
      PADDLE_THROW("TensorRT unsupported weight Shape for Elementwise op!");
    }

91 92 93
    TensorRTEngine::Weight shift_weights{nvinfer1::DataType::kFLOAT,
                                         static_cast<void*>(weight_data),
                                         static_cast<size_t>(Y_t->numel())};
N
nhzlx 已提交
94 95 96 97
    TensorRTEngine::Weight scale_weights{nvinfer1::DataType::kFLOAT, nullptr,
                                         0};
    TensorRTEngine::Weight power_weights{nvinfer1::DataType::kFLOAT, nullptr,
                                         0};
98 99 100 101 102 103 104 105 106 107 108
    if (op_type_ == "add") {
      nvinfer1::IScaleLayer* scale_layer = TRT_ENGINE_ADD_LAYER(
          engine_, Scale, *X, scale_mode, shift_weights.get(),
          scale_weights.get(), power_weights.get());
      layer = scale_layer;
    } else if (op_type_ == "mul") {
      nvinfer1::IScaleLayer* scale_layer = TRT_ENGINE_ADD_LAYER(
          engine_, Scale, *X, scale_mode, scale_weights.get(),
          shift_weights.get(), power_weights.get());
      layer = scale_layer;
    }
N
nhzlx 已提交
109 110

    auto output_name = op_desc.Output("Out")[0];
111 112 113 114 115 116 117
    RreplenishLayerAndOutput(layer, "elementwise_" + op_type_, {output_name},
                             test_mode);
    if (op_desc.HasAttr("out_scale")) {
#if IS_TRT_VERSION_GE(5000)
      float out_scale = boost::get<float>(op_desc.GetAttr("out_scale"));
      engine_->SetTensorDynamicRange(layer->getOutput(0), out_scale);
#endif
N
nhzlx 已提交
118 119
    }
  }
120 121 122

 protected:
  std::string op_type_;
N
nhzlx 已提交
123 124 125 126 127 128 129
};

class ElementwiseTensorOpConverter : public OpConverter {
 public:
  ElementwiseTensorOpConverter() {}
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
130 131 132
    auto op_pair = ops.find(op_type_);
    PADDLE_ENFORCE(op_pair != ops.end(), "Wrong elementwise op type!");

N
nhzlx 已提交
133 134 135
    // Here the two nullptr looks strange, that's because the
    // framework::OpDesc's constructor is strange.
    framework::OpDesc op_desc(op, nullptr);
136
    nvinfer1::ILayer* layer = nullptr;
N
nhzlx 已提交
137 138 139 140 141 142 143 144 145 146

    PADDLE_ENFORCE_EQ(op_desc.Input("X").size(), 1);
    PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1);  // Y is a weight
    PADDLE_ENFORCE_EQ(op_desc.Output("Out").size(), 1);

    auto* X = engine_->GetITensor(op_desc.Input("X").front());
    auto* Y = engine_->GetITensor(op_desc.Input("Y").front());
    nvinfer1::Dims dims_x = X->getDimensions();
    nvinfer1::Dims dims_y = Y->getDimensions();

147 148 149 150 151
    int axis = boost::get<int>(op_desc.GetAttr("axis"));
    auto output_name = op_desc.Output("Out")[0];
    if (CheckDims(dims_x, dims_y)) {
      // The two input tensor should have the same dims
      VLOG(3) << "Convert a fluid elementwise op to TensorRT IElementWiseLayer";
152
      nvinfer1::IElementWiseLayer* elet_layer = TRT_ENGINE_ADD_LAYER(
153 154
          engine_, ElementWise, *const_cast<nvinfer1::ITensor*>(X),
          *const_cast<nvinfer1::ITensor*>(Y), op_pair->second);
N
nhzlx 已提交
155

156
      layer = elet_layer;
157 158 159 160 161
    } else {
      VLOG(3) << "Convert a fluid elementwise op to TensorRT "
                 "ElementWisePluginLayer";

      plugin::ElementWisePlugin* plugin =
N
nhzlx 已提交
162
          new plugin::ElementWisePlugin(op_type_, dims_x, dims_y, axis);
163 164
      plugin->AddInput(X);
      plugin->AddInput(Y);
165
      nvinfer1::IPluginLayer* plugin_layer = engine_->AddPlugin(
166 167 168
          const_cast<nvinfer1::ITensor* const*>(plugin->GetInputs().data()), 2,
          reinterpret_cast<plugin::PluginTensorRT*>(plugin));

169
      layer = plugin_layer;
170
    }
171 172 173 174 175 176
    RreplenishLayerAndOutput(layer, "elementwise", {output_name}, test_mode);
    if (op_desc.HasAttr("out_scale")) {
#if IS_TRT_VERSION_GE(5000)
      float out_scale = boost::get<float>(op_desc.GetAttr("out_scale"));
      engine_->SetTensorDynamicRange(layer->getOutput(0), out_scale);
#endif
N
nhzlx 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
    }
  }

 protected:
  static const std::unordered_map<std::string, nvinfer1::ElementWiseOperation>
      ops;
  std::string op_type_;
};

const std::unordered_map<std::string, nvinfer1::ElementWiseOperation>
    ElementwiseTensorOpConverter::ops = {
        {"add", nvinfer1::ElementWiseOperation::kSUM},
        {"mul", nvinfer1::ElementWiseOperation::kPROD},
        {"sub", nvinfer1::ElementWiseOperation::kSUB},
        {"div", nvinfer1::ElementWiseOperation::kDIV},
        {"min", nvinfer1::ElementWiseOperation::kMIN},
        {"pow", nvinfer1::ElementWiseOperation::kPOW},
        {"max", nvinfer1::ElementWiseOperation::kMAX},
};

197 198 199 200 201 202 203 204 205 206
class ElementwiseWeightAddOpConverter : public ElementwiseWeightOpConverter {
 public:
  ElementwiseWeightAddOpConverter() { op_type_ = "add"; }
};

class ElementwiseWeightMulOpConverter : public ElementwiseWeightOpConverter {
 public:
  ElementwiseWeightMulOpConverter() { op_type_ = "mul"; }
};

N
nhzlx 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
class ElementwiseTensorAddOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorAddOpConverter() { op_type_ = "add"; }
};

class ElementwiseTensorMulOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorMulOpConverter() { op_type_ = "mul"; }
};

class ElementwiseTensorSubOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorSubOpConverter() { op_type_ = "sub"; }
};

class ElementwiseTensorDivOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorDivOpConverter() { op_type_ = "div"; }
};

class ElementwiseTensorMinOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorMinOpConverter() { op_type_ = "min"; }
};

class ElementwiseTensorMaxOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorMaxOpConverter() { op_type_ = "max"; }
};

class ElementwiseTensorPowOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorPowOpConverter() { op_type_ = "pow"; }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

246 247 248 249
REGISTER_TRT_OP_CONVERTER(elementwise_add_weight,
                          ElementwiseWeightAddOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_mul_weight,
                          ElementwiseWeightMulOpConverter);
N
nhzlx 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264

REGISTER_TRT_OP_CONVERTER(elementwise_add_tensor,
                          ElementwiseTensorAddOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_sub_tensor,
                          ElementwiseTensorSubOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_div_tensor,
                          ElementwiseTensorDivOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_mul_tensor,
                          ElementwiseTensorMulOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_max_tensor,
                          ElementwiseTensorMaxOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_min_tensor,
                          ElementwiseTensorMinOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_pow_tensor,
                          ElementwiseTensorPowOpConverter);