auc_op.cc 4.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
T
typhoonzero 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/metrics/auc_op.h"
T
typhoonzero 已提交
16 17 18 19

namespace paddle {
namespace operators {

T
update  
typhoonzero 已提交
20
class AucOp : public framework::OperatorWithKernel {
T
typhoonzero 已提交
21 22 23 24
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
武毅 已提交
25
  void InferShape(framework::InferShapeContext *ctx) const override {
Q
Qiao Longfei 已提交
26 27
    PADDLE_ENFORCE(ctx->HasInput("Predict"),
                   "Input of Out should not be null.");
T
typhoonzero 已提交
28
    PADDLE_ENFORCE(ctx->HasInput("Label"),
29
                   "Input of Label should not be null.");
Q
Qiao Longfei 已提交
30
    auto predict_width = ctx->GetInputDim("Predict")[1];
31 32 33 34 35
    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_LE(predict_width, 2,
                        "Only support binary classification,"
                        "prediction dims[1] should be 1 or 2");
    }
Q
Qiao Longfei 已提交
36
    auto predict_height = ctx->GetInputDim("Predict")[0];
武毅 已提交
37
    auto label_height = ctx->GetInputDim("Label")[0];
T
typhoonzero 已提交
38

39 40 41 42
    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(predict_height, label_height,
                        "Out and Label should have same height.");
    }
T
typhoonzero 已提交
43

T
tangwei12 已提交
44
    int num_pred_buckets = ctx->Attrs().Get<int>("num_thresholds") + 1;
T
tangwei12 已提交
45 46 47 48
    int slide_steps = ctx->Attrs().Get<int>("slide_steps");

    PADDLE_ENFORCE_GE(num_pred_buckets, 1, "num_thresholds must larger than 1");
    PADDLE_ENFORCE_GE(slide_steps, 0, "slide_steps must be natural number");
W
Wu Yi 已提交
49

T
typhoonzero 已提交
50
    ctx->SetOutputDim("AUC", {1});
T
tangwei12 已提交
51

H
hutuxian 已提交
52 53 54 55 56 57 58 59 60
    if (slide_steps) {
      ctx->SetOutputDim("StatPosOut",
                        {(1 + slide_steps) * num_pred_buckets + 1});
      ctx->SetOutputDim("StatNegOut",
                        {(1 + slide_steps) * num_pred_buckets + 1});
    } else {
      ctx->SetOutputDim("StatPosOut", {1, num_pred_buckets});
      ctx->SetOutputDim("StatNegOut", {1, num_pred_buckets});
    }
武毅 已提交
61 62 63
  }

 protected:
64
  framework::OpKernelType GetExpectedKernelType(
武毅 已提交
65
      const framework::ExecutionContext &ctx) const override {
66 67
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Predict"),
68
        ctx.device_context());
T
typhoonzero 已提交
69 70 71 72 73
  }
};

class AucOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
74
  void Make() override {
Q
Qiao Longfei 已提交
75 76 77
    AddInput("Predict",
             "A floating point 2D tensor with shape [batch_size, 2], values "
             "are in the range [0, 1]."
武毅 已提交
78
             "Typically, this tensor indicates the probability of each label");
T
auc_op  
typhoonzero 已提交
79
    AddInput("Label",
Q
Qiao Longfei 已提交
80 81
             "A 2D int tensor indicating the label of the training data. "
             "shape: [batch_size, 1]");
T
tangwei12 已提交
82

T
auc_op  
typhoonzero 已提交
83
    // TODO(typhoonzero): support weight input
T
tangwei12 已提交
84 85 86
    AddInput("StatPos", "Statistic value when label = 1");
    AddInput("StatNeg", "Statistic value when label = 0");

T
auc_op  
typhoonzero 已提交
87
    AddOutput("AUC",
T
typhoonzero 已提交
88
              "A scalar representing the "
89
              "current area-under-the-curve.");
T
tangwei12 已提交
90

T
tangwei12 已提交
91 92
    AddOutput("StatPosOut", "Statistic value when label = 1");
    AddOutput("StatNegOut", "Statistic value when label = 0");
T
typhoonzero 已提交
93

T
typhoonzero 已提交
94
    AddAttr<std::string>("curve", "Curve type, can be 'ROC' or 'PR'.")
T
typhoonzero 已提交
95
        .SetDefault("ROC");
T
tangwei12 已提交
96

T
tangwei12 已提交
97 98 99
    AddAttr<int>(
        "num_thresholds",
        "The number of thresholds to use when discretizing the roc curve.")
T
tangwei12 已提交
100
        .SetDefault((2 << 12) - 1);
T
tangwei12 已提交
101 102
    AddAttr<int>("slide_steps", "Use slide steps to calc batch auc.")
        .SetDefault(1);
103 104
    AddComment(R"DOC(
Area Under The Curve (AUC) Operator.
武毅 已提交
105

106 107
This implementation computes the AUC according to forward output and label.
It is used very widely in binary classification evaluation. As a note:
武毅 已提交
108
If input label contains values other than 0 and 1, it will be cast
109
to bool. You can find the relevant definitions here:
武毅 已提交
110 111
https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve

112 113 114
There are two types of possible curves:
1. ROC: Receiver operating characteristic
2. PR: Precision Recall
武毅 已提交
115
)DOC");
T
typhoonzero 已提交
116 117 118 119 120 121 122
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
T
update  
typhoonzero 已提交
123
REGISTER_OP_WITHOUT_GRADIENT(auc, ops::AucOp, ops::AucOpMaker);
T
typhoonzero 已提交
124
REGISTER_OP_CPU_KERNEL(auc, ops::AucKernel<paddle::platform::CPUPlace, float>);