elementwise_add_op.cu 6.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
Wu Yi 已提交
14
#include "paddle/fluid/operators/elementwise/elementwise_add_op.h"
15
#include "paddle/fluid/operators/elementwise/elementwise_op_broadcast.cu.h"
16
#include "paddle/fluid/platform/complex.h"
K
Kexin Zhao 已提交
17
#include "paddle/fluid/platform/float16.h"
G
gongweibao 已提交
18 19

namespace ops = paddle::operators;
K
Kexin Zhao 已提交
20
namespace plat = paddle::platform;
G
gongweibao 已提交
21

22 23 24
namespace paddle {
namespace operators {

25 26 27 28 29 30 31 32
/*
   input: an array;
   return: the result of the math functor
   1. For Unary Op, the length of input array is 1,
      e.g. Relu: return args[0] > 0 ? args[0] : 0;
   2. For Binary Op, the length of input array is 2,
      e.g. Add: return args[0] + args[1];
*/
33
template <typename T>
34
struct CudaAddFunctor {
35 36 37
  __device__ __forceinline__ T operator()(const T* args) const {
    return args[0] + args[1];
  }
38 39
};

40
template <typename T>
41 42 43 44
class ElementwiseAddKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
45 46 47
    std::vector<const framework::Tensor*> ins;
    std::vector<framework::Tensor*> outs;
    PackTensorsIntoVector<T>(ctx, &ins, &outs);
48
    LaunchElementwiseCudaKernel<ElementwiseType::kBinary, T, T>(
49
        ctx, ins, &outs, CudaAddFunctor<T>());
50 51 52
  }
};

53
template <typename T>
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
static __global__ void SimpleElemwiseAddGradCUDAKernel(
    const T* __restrict__ dout, int size, int vec_size, T* dx, T* dy) {
  int tid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = gridDim.x * blockDim.x;
  int loop = size / vec_size;
  int remainder = size % vec_size;
  const float4* dout_vec = reinterpret_cast<const float4*>(dout);
  float4* dx_vec = reinterpret_cast<float4*>(dx);
  float4* dy_vec = reinterpret_cast<float4*>(dy);
  float4 tmp_loop;

  for (int i = tid; i < loop; i += stride) {
    tmp_loop = dout_vec[i];
    dx_vec[i] = tmp_loop;
    dy_vec[i] = tmp_loop;
  }
70

71 72 73 74 75 76 77 78 79
  if (tid == loop && remainder != 0) {
    T tmp_rem;
    while (remainder) {
      int idx = size - remainder;
      remainder--;
      tmp_rem = dout[idx];
      dx[idx] = tmp_rem;
      dy[idx] = tmp_rem;
    }
80 81 82 83 84 85
  }
}

template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, plat::CUDADeviceContext>::value>::type
86 87 88 89 90
elementwise_add_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy) {
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
  auto* dx_data = dx->mutable_data<T>(ctx.GetPlace());
  auto* dy_data = dy->mutable_data<T>(ctx.GetPlace());
  auto* dout_data = dout->data<T>();
  if (dx_data == dout_data && dy_data != dout_data) {
    VLOG(4) << "Special case when dx_data is the same as dout_data, "
               "only need copy dout to dy";
    framework::TensorCopy(
        *dout, ctx.GetPlace(),
        ctx.template device_context<platform::DeviceContext>(), dy);
  } else if (dx_data != dout_data && dy_data == dout_data) {
    VLOG(4) << "Special case when dy_data is the same as dout_data, "
               "only need copy dout to dx";
    framework::TensorCopy(
        *dout, ctx.GetPlace(),
        ctx.template device_context<platform::DeviceContext>(), dx);
  } else if (dx_data != dout_data && dy_data != dout_data) {
    auto size = x->numel();
    int vec_size = max(static_cast<int>(sizeof(float4) / sizeof(T)), 1);
    dim3 block_size = dim3(PADDLE_CUDA_THREAD_SIZE, 1);
    dim3 grid_size =
        dim3(((size + vec_size - 1) / vec_size + PADDLE_CUDA_THREAD_SIZE - 1) /
                 PADDLE_CUDA_THREAD_SIZE,
             1);
    SimpleElemwiseAddGradCUDAKernel<
        T><<<grid_size, block_size, 0,
             ctx.template device_context<plat::CUDADeviceContext>().stream()>>>(
        dout->data<T>(), size, vec_size, dx->mutable_data<T>(ctx.GetPlace()),
        dy->mutable_data<T>(ctx.GetPlace()));
  } else {
    VLOG(4) << "Special case when dy_data is the same as dout_data, "
               "and dx_data is the same as dout_data, do not need "
               "any operator";
  }
124 125 126 127
}

}  // namespace operators
}  // namespace paddle
Q
QI JUN 已提交
128
REGISTER_OP_CUDA_KERNEL(
K
Kexin Zhao 已提交
129 130 131
    elementwise_add, ops::ElementwiseAddKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, int>,
K
Kexin Zhao 已提交
132
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, int64_t>,
133
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, plat::float16>,
134 135
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, plat::complex<float>>,
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, plat::complex<double>>);
Q
QI JUN 已提交
136
REGISTER_OP_CUDA_KERNEL(
G
gongweibao 已提交
137
    elementwise_add_grad,
K
Kexin Zhao 已提交
138 139 140
    ops::ElementwiseAddGradKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseAddGradKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseAddGradKernel<plat::CUDADeviceContext, int>,
C
chengduo 已提交
141
    ops::ElementwiseAddGradKernel<plat::CUDADeviceContext, int64_t>,
142
    ops::ElementwiseAddGradKernel<plat::CUDADeviceContext, plat::float16>,
143 144 145 146
    ops::ElementwiseAddGradKernel<plat::CUDADeviceContext,
                                  plat::complex<float>>,
    ops::ElementwiseAddGradKernel<plat::CUDADeviceContext,
                                  plat::complex<double>>);
147 148 149 150 151
REGISTER_OP_CUDA_KERNEL(
    elementwise_add_grad_grad,
    ops::ElementwiseAddDoubleGradKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseAddDoubleGradKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseAddDoubleGradKernel<plat::CUDADeviceContext, int>,
152
    ops::ElementwiseAddDoubleGradKernel<plat::CUDADeviceContext, int64_t>,
153
    ops::ElementwiseAddDoubleGradKernel<plat::CUDADeviceContext, plat::float16>,
154
    ops::ElementwiseAddDoubleGradKernel<plat::CUDADeviceContext,
155
                                        plat::complex<float>>,
156
    ops::ElementwiseAddDoubleGradKernel<plat::CUDADeviceContext,
157
                                        plat::complex<double>>);
158 159 160 161 162 163

REGISTER_OP_CUDA_KERNEL(
    grad_add, ops::ElementwiseAddKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, int>,
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, int64_t>,
164
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, plat::float16>,
165 166
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, plat::complex<float>>,
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, plat::complex<double>>);