mobilenetv1_test.cc 3.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include <vector>
#include "paddle/fluid/lite/api/cxx_api.h"
19
#include "paddle/fluid/lite/api/test_helper.h"
20 21 22 23 24 25 26 27
#include "paddle/fluid/lite/core/mir/use_passes.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/kernels/use_kernels.h"
#include "paddle/fluid/lite/operators/use_ops.h"

namespace paddle {
namespace lite {

C
Chunwei 已提交
28 29
void TestModel(const std::vector<Place>& valid_places,
               const Place& preferred_place) {
30
  DeviceInfo::Init();
31
  DeviceInfo::Global().SetRunMode(LITE_POWER_HIGH, FLAGS_threads);
C
Chunwei 已提交
32
  lite::Predictor predictor;
33

C
Chunwei 已提交
34
  predictor.Build(FLAGS_model_dir, preferred_place, valid_places);
35 36 37 38 39 40 41 42

  auto* input_tensor = predictor.GetInput(0);
  input_tensor->Resize(DDim(std::vector<DDim::value_type>({1, 3, 224, 224})));
  auto* data = input_tensor->mutable_data<float>();
  for (int i = 0; i < input_tensor->dims().production(); i++) {
    data[i] = 1;
  }

43 44 45 46 47 48 49 50 51 52 53 54 55 56
  for (int i = 0; i < FLAGS_warmup; ++i) {
    predictor.Run();
  }

  auto start = GetCurrentUS();
  for (int i = 0; i < FLAGS_repeats; ++i) {
    predictor.Run();
  }

  LOG(INFO) << "================== Speed Report ===================";
  LOG(INFO) << "Model: " << FLAGS_model_dir << ", threads num " << FLAGS_threads
            << ", warmup: " << FLAGS_warmup << ", repeats: " << FLAGS_repeats
            << ", spend " << (GetCurrentUS() - start) / FLAGS_repeats / 1000.0
            << " ms in average.";
57 58 59 60 61 62 63 64 65 66 67 68 69

  auto* out = predictor.GetOutput(0);
  std::vector<float> results({1.91308980e-04, 5.92055148e-04, 1.12303176e-04,
                              6.27335685e-05, 1.27507330e-04, 1.32147351e-03,
                              3.13812525e-05, 6.52209565e-05, 4.78087313e-05,
                              2.58822285e-04});
  for (int i = 0; i < results.size(); ++i) {
    EXPECT_NEAR(out->data<float>()[i], results[i], 1e-5);
  }
  ASSERT_EQ(out->dims().size(), 2);
  ASSERT_EQ(out->dims()[0], 1);
  ASSERT_EQ(out->dims()[1], 1000);
}
C
Chunwei 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

TEST(MobileNetV1, test_arm) {
  std::vector<Place> valid_places({
      Place{TARGET(kHost), PRECISION(kFloat)},
      Place{TARGET(kARM), PRECISION(kFloat)},
      // Place{TARGET(kOpenCL), PRECISION(kFloat)},
  });

  TestModel(valid_places, Place({TARGET(kARM), PRECISION(kFloat)}));
}

TEST(MobileNetV1, test_opencl) {
  std::vector<Place> valid_places({
      Place{TARGET(kHost), PRECISION(kFloat)},
      Place{TARGET(kARM), PRECISION(kFloat)},
      Place{TARGET(kOpenCL), PRECISION(kFloat)},
  });

  TestModel(valid_places, Place({TARGET(kOpenCL), PRECISION(kFloat)}));
}
90 91 92

}  // namespace lite
}  // namespace paddle