conv_transpose_op.cc 21.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_transpose_op.h"
S
sneaxiy 已提交
16
#include <memory>
S
Siddharth Goyal 已提交
17 18
#include <string>
#include <vector>
19
#include "paddle/fluid/framework/data_layout.h"
20
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
C
chengduoZH 已提交
21

J
Jacek Czaja 已提交
22 23 24 25
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

C
chengduoZH 已提交
26 27 28
namespace paddle {
namespace operators {

29 30
using DataLayout = framework::DataLayout;

C
chengduoZH 已提交
31
void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
32 33 34 35 36 37
  PADDLE_ENFORCE_EQ(ctx->HasInput("Input"), true,
                    "Input(Input) of ConvTransposeOp should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasInput("Filter"), true,
                    "Input(Filter) of ConvTransposeOp should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasOutput("Output"), true,
                    "Output(Output) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
38 39 40

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
41 42
  std::vector<int> output_size =
      ctx->Attrs().Get<std::vector<int>>("output_size");
C
chengduoZH 已提交
43 44
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
C
chengduoZH 已提交
45
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
Y
Yibing Liu 已提交
46
  int groups = ctx->Attrs().Get<int>("groups");
47 48
  std::string padding_algorithm =
      ctx->Attrs().Get<std::string>("padding_algorithm");
49 50 51 52 53
  const std::string data_layout_str =
      ctx->Attrs().Get<std::string>("data_format");
  const DataLayout data_layout =
      this->IsMKLDNNType() ? DataLayout::kNCHW
                           : framework::StringToDataLayout(data_layout_str);
C
chengduoZH 已提交
54

55 56
  PADDLE_ENFORCE_EQ(in_dims.size() == 4 || in_dims.size() == 5, true,
                    "ConvTransposeOp intput should be 4-D or 5-D tensor.");
C
chengduoZH 已提交
57 58 59
  PADDLE_ENFORCE_EQ(in_dims.size(), filter_dims.size(),
                    "ConvTransposeOp input dimension and filter dimension "
                    "should be the same.");
60 61 62 63
  PADDLE_ENFORCE_EQ(
      in_dims.size() - strides.size(), 2U,
      "ConvTransposeOp input dimension and strides dimension should "
      "be consistent.");
64 65 66 67
  if (output_size.size())
    PADDLE_ENFORCE_EQ(output_size.size(), strides.size(),
                      "ConvTransposeOp output_size dimension and strides "
                      "dimension should be the same.");
C
chengduoZH 已提交
68

69
  const int64_t C =
70
      (data_layout != DataLayout::kNHWC ? in_dims[1]
71 72 73 74 75 76 77
                                        : in_dims[in_dims.size() - 1]);
  PADDLE_ENFORCE_EQ(
      C, filter_dims[0],
      "The number of input channels of Op(ConvTransposeOp) should "
      "be equal to the number of filter's channels.");

  framework::DDim in_data_dims;
78
  if (data_layout != DataLayout::kNHWC) {
79 80 81 82 83 84 85 86 87 88 89
    in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
  } else {
    in_data_dims = framework::slice_ddim(in_dims, 1, in_dims.size() - 1);
  }
  framework::DDim filter_data_dims =
      framework::slice_ddim(filter_dims, 2, filter_dims.size());
  std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
  UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                           in_data_dims, strides, ksize);

  std::vector<int64_t> output_shape({in_dims[0]});
90
  if (data_layout != DataLayout::kNHWC) {
91 92
    output_shape.push_back(filter_dims[1] * groups);
  }
93
  const int offset = (data_layout != DataLayout::kNHWC ? 2 : 1);
C
chengduoZH 已提交
94
  for (size_t i = 0; i < strides.size(); ++i) {
C
chengduoZH 已提交
95
    auto filter_extent = dilations[i] * (filter_dims[i + 2] - 1) + 1;
96 97
    auto infer_shape = (in_dims[i + offset] - 1) * strides[i] -
                       paddings[2 * i] - paddings[2 * i + 1] + filter_extent;
98
    if (output_size.size()) {
99 100 101 102 103
      PADDLE_ENFORCE_EQ((output_size[i] >= infer_shape &&
                         output_size[i] < infer_shape + strides[i]),
                        true,
                        "output_size of Op(ConvTransposeOp) should be "
                        "in appropriate range.");
104 105 106 107
      output_shape.push_back(output_size[i]);
    } else {
      output_shape.push_back(infer_shape);
    }
C
chengduoZH 已提交
108
  }
109 110 111
  if (data_layout == DataLayout::kNHWC) {
    output_shape.push_back(filter_dims[1] * groups);
  }
C
chengduoZH 已提交
112
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
C
chengduoZH 已提交
113 114
}

115 116
framework::OpKernelType ConvTransposeOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
J
Jacek Czaja 已提交
117
  framework::LibraryType library_{framework::LibraryType::kPlain};
118
  framework::DataLayout layout_ = framework::DataLayout::kAnyLayout;
119
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
C
chengduoZH 已提交
120
  use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
C
chengduoZH 已提交
121 122 123 124
#ifdef PADDLE_WITH_CUDA
  if (platform::is_gpu_place(ctx.GetPlace())) {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
J
Jacek Czaja 已提交
125 126 127
    if (use_cudnn) {
      library_ = framework::LibraryType::kCUDNN;
    }
C
chengduoZH 已提交
128 129
  }
#endif
J
Jacek Czaja 已提交
130 131 132 133 134
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
    layout_ = framework::DataLayout::kMKLDNN;
135
  }
J
Jacek Czaja 已提交
136
#endif
137

138 139 140
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_);
141 142
}

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
framework::OpKernelType ConvTransposeOp::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if ((var_name == "Input") &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
      return framework::OpKernelType(
          expected_kernel_type.data_type_, tensor.place(),
          framework::StringToDataLayout(data_format));
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

Y
Yu Yang 已提交
169
void Conv2DTransposeOpMaker::Make() {
J
Jacek Czaja 已提交
170 171 172 173
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
174 175 176 177 178
  AddInput("Input",
           "(Tensor) The input tensor of convolution transpose operator. "
           "The format of input tensor is NCHW or NHWC. Where N is batch size, "
           "C is the number of input channels, H is the height of the feature, "
           "and W is the width of the feature.");
C
chengduoZH 已提交
179 180 181 182 183 184 185 186
  AddInput(
      "Filter",
      "(Tensor) The filter tensor of convolution transpose operator. "
      "The format of the filter tensor is MCHW, where M is the number of "
      "input feature channels, C is the number of "
      "output feature channels,"
      "H is the height of the filter, and W is the width of the filter. "
      "We enforce groups number == 1 in the convolution transpose scenario.");
187 188 189 190 191 192
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
      .AsDispensable();

C
chengduoZH 已提交
193
  AddOutput("Output",
C
chengduoZH 已提交
194
            "(Tensor) The output tensor of convolution transpose operator. "
195
            "The format of output tensor is the same as input tensor.");
196 197 198 199
  AddAttr<std::vector<int>>("output_size",
                            "(vector<int> default: []), the "
                            "size of the output tensor")
      .SetDefault({});
Y
Yibing Liu 已提交
200 201 202 203
  AddAttr<int>("groups",
               "(int default:1), the groups number of the convolution "
               "transpose operator. ")
      .SetDefault(1);
C
chengduoZH 已提交
204 205 206 207 208
  AddAttr<std::vector<int>>("dilations",
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of convolution "
                            "transpose operator.")
      .SetDefault({1, 1});
C
chengduoZH 已提交
209 210
  AddAttr<std::vector<int>>(
      "strides",
C
chengduoZH 已提交
211
      "(vector<int> default:{1, 1}), the strides(h_stride, w_stride) of "
212
      "convolution transpose operator.")
C
chengduoZH 已提交
213
      .SetDefault({1, 1});
C
chengduoZH 已提交
214 215
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
216
      "(vector<int> default:{0, 0}), the paddings(h_pad, w_pad) of convolution "
C
chengduoZH 已提交
217
      "transpose operator.")
C
chengduoZH 已提交
218
      .SetDefault({0, 0});
219 220 221 222
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
J
Jacek Czaja 已提交
223 224 225 226 227
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
228 229 230 231 232 233 234 235
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
      .SetDefault("");
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
236 237 238 239
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
240 241 242 243 244 245 246 247 248
      "Specify that the data format of the input and output data is "
      "channel_first or channel_last.")
      .SetDefault("NCHW");
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
249 250 251 252 253 254
  AddAttr<int>("workspace_size_MB",
               "Used in cudnn kernel only. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardward. This size should be carefully setted.")
255
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB());
C
chengduoZH 已提交
256
  AddComment(R"DOC(
C
chengduoZH 已提交
257 258
Convolution2D Transpose Operator.

C
chengduoZH 已提交
259
The convolution transpose operation calculates the output based on the input, filter
C
chengduoZH 已提交
260
and dilations, strides, paddings, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
261
parameters is checked in the infer-shape.
262
Input(Input) and output(Output) are in NCHW or NHWC format. Where N is batchsize, C is the
C
chengduoZH 已提交
263 264 265 266 267 268
number of channels, H is the height of the feature, and W is the width of the feature.
Filter(Input) is in MCHW format. Where M is the number of input feature channels,
C is the number of output feature channels, H is the height of the filter,
and W is the width of the filter.
Parameters(strides, paddings) are two elements. These two elements represent height
and width, respectively.
C
chengduoZH 已提交
269
The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
270

Y
update  
yi.wu 已提交
271
For an example:
C
chengduoZH 已提交
272
  Input:
C
chengduoZH 已提交
273 274
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{in}, C_{out}, H_f, W_f)$
C
chengduoZH 已提交
275
  Output:
C
chengduoZH 已提交
276 277 278
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
  $$
279 280
       H_{out} = (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom  + dilations[0] * (H_f - 1) + 1 \\
       W_{out} = (W_{in} - 1) * strides[1] - pad_width_left  - pad_width_right + dilations[1] * (W_f - 1) + 1
C
chengduoZH 已提交
281
  $$
C
chengduoZH 已提交
282 283 284
)DOC");
}

Y
Yu Yang 已提交
285
void Conv3DTransposeOpMaker::Make() {
286 287 288 289 290 291
  AddInput(
      "Input",
      "(Tensor) The input tensor of convolution transpose operator."
      "The format of input tensor is NCDHW or NDHWC. Where N is batch "
      "size, C is the number of channels, D is the depth of the feature, "
      "H is the height of the feature, and W is the width of the feature.");
C
chengduoZH 已提交
292 293
  AddInput("Filter",
           "(Tensor) The filter tensor of convolution transpose operator."
C
chengduoZH 已提交
294 295 296
           "The format of the filter tensor is MCDHW, where M is the number of "
           "input feature channels, C is the number of "
           "output feature channels, D "
C
chengduoZH 已提交
297 298
           "is the depth of the filter, H is the height of the filter, and "
           "W is the width of the filter."
C
chengduoZH 已提交
299
           "We enforce groups number == 1 and padding == 0 in "
C
chengduoZH 已提交
300
           "the convolution3d transpose scenario.");
C
chengduoZH 已提交
301 302
  AddOutput("Output",
            "(Tensor) The output tensor of convolution transpose operator."
303
            "The format of output tensor is the same as input tensor."
C
chengduoZH 已提交
304
            "Where N is batch size, C is "
C
chengduoZH 已提交
305 306
            "the number of channels, D is the depth of the feature, H is the "
            "height of the feature, and W is the width of the feature.");
307 308 309 310
  AddAttr<std::vector<int>>("output_size",
                            "(vector<int> default: []), the "
                            "size of the output tensor")
      .SetDefault({});
C
chengduoZH 已提交
311 312 313 314 315 316
  AddAttr<std::vector<int>>(
      "dilations",
      "(vector<int> default:{1, 1, 1}), the "
      "dilations(d_dilation,h_dilation, w_dilation) of convolution "
      "transpose operator.")
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
317
  AddAttr<std::vector<int>>("strides",
C
chengduoZH 已提交
318
                            "(vector<int> default:{1, 1, 1}), the "
319
                            "strides{d_stride, h_stride, w_stride} of "
C
chengduoZH 已提交
320
                            "convolution transpose operator.")
C
chengduoZH 已提交
321
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
322
  AddAttr<std::vector<int>>("paddings",
C
chengduoZH 已提交
323
                            "(vector<int> default:{0, 0, 0}), paddings(d_pad, "
C
chengduoZH 已提交
324
                            "h_pad, w_pad) of convolution transpose operator.")
C
chengduoZH 已提交
325
      .SetDefault({0, 0, 0});
326 327 328 329
  AddAttr<int>("groups",
               "(int default:1), the groups number of the convolution3d "
               "transpose operator. ")
      .SetDefault(1);
330 331 332 333
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
334 335 336
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
337 338 339 340
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
341 342 343 344 345 346 347 348 349
      "Specify that the data format of the input and output data is "
      "channel_first or channel_last.")
      .SetDefault("NCHW");
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
350 351 352 353 354 355
  AddAttr<int>("workspace_size_MB",
               "Used in cudnn kernel only. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardward. This size should be carefully setted.")
356
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB());
C
chengduoZH 已提交
357
  AddComment(R"DOC(
C
chengduoZH 已提交
358 359
Convolution3D Transpose Operator.

C
chengduoZH 已提交
360
The convolution transpose operation calculates the output based on the input, filter
C
chengduoZH 已提交
361
and dilations, strides, paddings, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
362
parameters is checked in the infer-shape.
363
Input(Input) and output(Output) are in NCDHW or NDHWC format. Where N is batch size, C is the
C
chengduoZH 已提交
364 365 366 367 368 369 370
number of channels, D is the depth of the feature, H is the height of the feature,
and W is the width of the feature.
Filter(Input) is in MCDHW format. Where M is the number of input feature channels,
C is the number of output feature channels, D is the depth of the filter,H is the
height of the filter, and W is the width of the filter.
Parameters(strides, paddings) are three elements. These three elements represent
depth, height and width, respectively.
C
chengduoZH 已提交
371
The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
372

373
Example:
C
chengduoZH 已提交
374
  Input:
C
chengduoZH 已提交
375 376
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{in}, C_{out}, D_f, H_f, W_f)$
C
chengduoZH 已提交
377
  Output:
C
chengduoZH 已提交
378 379 380
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
381 382 383
       D_{out} = (D_{in} - 1) * strides[0] - pad_depth_front - pad_depth_back + dilations[0] * (D_f - 1) + 1 \\
       H_{out} = (H_{in} - 1) * strides[1] - pad_height_top  - pad_height_bottom + dilations[1] * (H_f - 1) + 1 \\
       W_{out} = (W_{in} - 1) * strides[2] - pad_width_left - pad_width_right + dilations[2] * (W_f - 1) + 1
C
chengduoZH 已提交
384
  $$
C
chengduoZH 已提交
385 386 387
)DOC");
}

C
chengduoZH 已提交
388
void ConvTransposeOpGrad::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
389 390 391 392 393 394 395 396 397 398
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

399 400 401
framework::OpKernelType ConvTransposeOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
402
  use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
C
chengduoZH 已提交
403 404 405 406 407 408
#ifdef PADDLE_WITH_CUDA
  if (platform::is_gpu_place(ctx.GetPlace())) {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
  }
#endif
409 410 411 412 413 414 415
  framework::LibraryType library_;
  if (use_cudnn) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    library_ = framework::LibraryType::kPlain;
  }

416
  framework::DataLayout layout_ = framework::DataLayout::kAnyLayout;
417 418 419
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_);
420 421
}

S
sneaxiy 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
class ConvTransposeGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType(ForwardOp().Type() + "_grad");
    op->SetInput("Input", Input("Input"));
    op->SetInput("Filter", Input("Filter"));
    op->SetOutput(framework::GradVarName("Input"), InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), InputGrad("Filter"));
    if (ForwardOp().Inputs().count("Bias") > 0) {
      op->SetInput("Bias", Input("Bias"));
      op->SetOutput(framework::GradVarName("Bias"), InputGrad("Bias"));
    }
    op->SetInput(framework::GradVarName("Output"), OutputGrad("Output"));
    op->SetAttrMap(Attrs());
    return op;
  }
};

C
chengduoZH 已提交
444 445 446 447
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
chengduoZH 已提交
448

449
// conv2d_transpose
Y
Yang Yang 已提交
450 451
REGISTER_OPERATOR(conv2d_transpose, ops::ConvTransposeOp,
                  ops::Conv2DTransposeOpMaker,
S
sneaxiy 已提交
452
                  ops::ConvTransposeGradOpDescMaker);
453
REGISTER_OPERATOR(conv2d_transpose_grad, ops::ConvTransposeOpGrad);
C
chengduoZH 已提交
454 455

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
456
    conv2d_transpose,
Q
QI JUN 已提交
457 458
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
459
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
460
    conv2d_transpose_grad,
Q
QI JUN 已提交
461 462 463
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);
C
chengduoZH 已提交
464

465
// conv3d_transpose
Y
Yang Yang 已提交
466 467
REGISTER_OPERATOR(conv3d_transpose, ops::ConvTransposeOp,
                  ops::Conv3DTransposeOpMaker,
S
sneaxiy 已提交
468
                  ops::ConvTransposeGradOpDescMaker);
469
REGISTER_OPERATOR(conv3d_transpose_grad, ops::ConvTransposeOpGrad);
C
chengduoZH 已提交
470 471

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
472
    conv3d_transpose,
Q
QI JUN 已提交
473 474
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
475
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
476
    conv3d_transpose_grad,
Q
QI JUN 已提交
477 478 479
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);
480 481 482 483

// depthwise conv2d_transpose
REGISTER_OPERATOR(depthwise_conv2d_transpose, ops::ConvTransposeOp,
                  ops::Conv2DTransposeOpMaker,
S
sneaxiy 已提交
484
                  ops::ConvTransposeGradOpDescMaker);
485 486 487 488 489 490 491 492 493 494 495
REGISTER_OPERATOR(depthwise_conv2d_transpose_grad, ops::ConvTransposeOpGrad);

REGISTER_OP_CPU_KERNEL(
    depthwise_conv2d_transpose,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    depthwise_conv2d_transpose_grad,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);