conv_op.h 43.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

L
liym27 已提交
17
#include <algorithm>
Q
qingqing01 已提交
18
#include <string>
Q
qingqing01 已提交
19
#include <unordered_map>
20
#include <vector>
Y
Yi Wang 已提交
21 22
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
L
lvmengsi 已提交
23
#include "paddle/fluid/operators/detail/safe_ref.h"
Y
Yu Yang 已提交
24
#include "paddle/fluid/operators/math/blas.h"
Y
Yi Wang 已提交
25 26 27
#include "paddle/fluid/operators/math/depthwise_conv.h"
#include "paddle/fluid/operators/math/im2col.h"
#include "paddle/fluid/operators/math/vol2col.h"
28 29 30 31 32

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
X
Xin Pan 已提交
33 34
constexpr int kConvMKLDNNFP32 = 1;
constexpr int kConvMKLDNNINT8 = 2;
35
constexpr int MaxKeyLength = 256;
36

武毅 已提交
37 38
// Base convolution operator definations for other conv
// like operators to reuse the implementation.
Y
Yang Yang 已提交
39 40
inline int ConvOutputSize(int input_size, int filter_size, int dilation,
                          int padding, int stride) {
C
chengduoZH 已提交
41
  const int dkernel = dilation * (filter_size - 1) + 1;
C
chengduoZH 已提交
42
  int output_size = (input_size + 2 * padding - dkernel) / stride + 1;
L
liym27 已提交
43 44
  PADDLE_ENFORCE_GT(
      output_size, 0,
C
chengduoZH 已提交
45 46 47 48 49
      "Due to the settings of padding(%d), filter_size(%d), dilation(%d) and "
      "stride(%d), the output size is less than 0, please check "
      "again. Input_size:%d",
      padding, filter_size, dilation, stride, input_size);

武毅 已提交
50 51
  return output_size;
}
L
liym27 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

inline int ConvOutputSize(int input_size, int filter_size, int dilation,
                          int padding_1, int padding_2, int stride) {
  const int dkernel = dilation * (filter_size - 1) + 1;
  int output_size = (input_size + padding_1 + padding_2 - dkernel) / stride + 1;
  PADDLE_ENFORCE_GT(output_size, 0,
                    "Due to the settings of padding(%d, %d), filter_size(%d), "
                    "dilation(%d) and "
                    "stride(%d), the output size is less than 0, please check "
                    "again. Input_size:%d",
                    padding_1, padding_2, filter_size, dilation, stride,
                    input_size);

  return output_size;
}
inline void UpdatePaddingAndDilation(std::vector<int>* paddings,
                                     std::vector<int>* dilation,
                                     const std::string padding_algorithm,
                                     const framework::DDim data_dims,
                                     const std::vector<int>& strides,
                                     const std::vector<int>& ksize) {
  // set padding size == data_dims.size() * 2
  auto data_shape = framework::vectorize<int>(data_dims);
  if (paddings->size() == data_dims.size()) {
    for (size_t i = 0; i < data_dims.size(); ++i) {
      int copy_pad = *(paddings->begin() + 2 * i);
      paddings->insert(paddings->begin() + 2 * i + 1, copy_pad);
    }
  } else {
    PADDLE_ENFORCE_EQ(
        data_dims.size() * 2, paddings->size(),
        "Paddings size should be the same or twice as the input data size.");
  }

86
  // when padding_algorithm is "VALID" or "SAME"
L
liym27 已提交
87 88
  if (padding_algorithm == "SAME") {
    for (size_t i = 0; i < data_dims.size(); ++i) {
89
      int out_size = (data_dims[i] + strides[i] - 1) / strides[i];
L
liym27 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
      int pad_sum =
          std::max((out_size - 1) * strides[i] + ksize[i] - data_shape[i], 0);
      int pad_0 = pad_sum / 2;
      int pad_1 = pad_sum - pad_0;
      *(paddings->begin() + i * 2) = pad_0;
      *(paddings->begin() + i * 2 + 1) = pad_1;

      // dilation
      *(dilation->begin() + i) = 1;
    }

  } else if (padding_algorithm == "VALID") {
    for (auto it = paddings->begin(); it != paddings->end(); it++) {
      *it = 0;
    }
  }
}

108 109 110 111
inline bool IsExpand(const std::vector<int64_t>& filter_dim,
                     const std::vector<int>& strides,
                     const std::vector<int>& paddings,
                     const std::vector<int>& dilations) {
C
chengduoZH 已提交
112 113
  bool filter_1 = true, strides_1 = true, padding_0 = true, dilation_1 = true;
  for (size_t j = 0; j < strides.size(); ++j) {
C
chengduoZH 已提交
114
    filter_1 = filter_1 && (static_cast<int>(filter_dim[j + 2]) == 1);
C
chengduoZH 已提交
115 116 117
    strides_1 = strides_1 && (strides[j] == 1);
    padding_0 = padding_0 && (paddings[j] == 0);
    dilation_1 = dilation_1 && (dilations[j] == 1);
C
chengduoZH 已提交
118
  }
L
liym27 已提交
119 120 121 122 123
  if (paddings.size() != strides.size()) {
    for (size_t j = 0; j < paddings.size(); ++j) {
      padding_0 = padding_0 && (paddings[j] == 0);
    }
  }
C
chengduoZH 已提交
124
  return !(filter_1 && strides_1 && padding_0 && dilation_1);
C
chengduoZH 已提交
125
}
武毅 已提交
126

L
liym27 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
template <typename DeviceContext, typename T>
inline void ResizeToChannelFirst(const framework::ExecutionContext& context,
                                 const Tensor* input,
                                 Tensor* transformed_input) {
  int dim = input->dims().size() - 2;
  if (dim == 3) {
    // input
    transformed_input->Resize(input->dims());

    auto in_dims_vec = framework::vectorize(input->dims());
    in_dims_vec[1] = input->dims()[4];
    in_dims_vec[2] = input->dims()[1];
    in_dims_vec[3] = input->dims()[2];
    in_dims_vec[4] = input->dims()[3];
    transformed_input->Resize(framework::make_ddim(in_dims_vec));
    transformed_input->mutable_data<T>(context.GetPlace());

  } else if (dim == 2) {
    // input
    transformed_input->Resize(input->dims());

    auto in_dims_vec = framework::vectorize(input->dims());
    in_dims_vec[1] = input->dims()[3];
    in_dims_vec[2] = input->dims()[1];
    in_dims_vec[3] = input->dims()[2];
    transformed_input->Resize(framework::make_ddim(in_dims_vec));
    transformed_input->mutable_data<T>(context.GetPlace());
  }
}

template <typename DeviceContext, typename T>
inline void TransToChannelFirst(const framework::ExecutionContext& context,
                                const Tensor* input,
                                Tensor* transformed_input) {
  int dim = input->dims().size() - 2;
  if (dim == 3) {
    auto& dev_ctx = context.template device_context<DeviceContext>();
    std::vector<int> axis{0, 4, 1, 2, 3};
    math::Transpose<DeviceContext, T, 5> trans5;
    trans5(dev_ctx, *input, transformed_input, axis);

  } else if (dim == 2) {
    auto& dev_ctx = context.template device_context<DeviceContext>();
    std::vector<int> axis{0, 3, 1, 2};
    math::Transpose<DeviceContext, T, 4> trans4;
    trans4(dev_ctx, *input, transformed_input, axis);
  }
}

template <typename DeviceContext, typename T>
inline void TransToChannelLast(const framework::ExecutionContext& context,
                               const Tensor* input, Tensor* transformed_input) {
  int dim = input->dims().size() - 2;
  if (dim == 3) {
    auto& dev_ctx = context.template device_context<DeviceContext>();
    std::vector<int> axis{0, 2, 3, 4, 1};
    math::Transpose<DeviceContext, T, 5> trans5;
    trans5(dev_ctx, *input, transformed_input, axis);

  } else if (dim == 2) {
    auto& dev_ctx = context.template device_context<DeviceContext>();
    std::vector<int> axis{0, 2, 3, 1};
    math::Transpose<DeviceContext, T, 4> trans4;
    trans4(dev_ctx, *input, transformed_input, axis);
  }
}
武毅 已提交
193 194 195 196
// Define Op classes in .h file so that other conv
// operator implementations can reuse the code.
class Conv2DOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Q
qingqing01 已提交
197 198 199 200
  void Make() final;

 protected:
  virtual void Apply() {}
武毅 已提交
201 202
};

C
chengduoZH 已提交
203 204
class Conv3DOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Q
qingqing01 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217
  void Make() final;

 protected:
  virtual void Apply() {}
};

class ConvOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{
        {"Input", /*->*/ "Output"}};
  }
C
chengduoZH 已提交
218 219 220
};

class ConvOp : public framework::OperatorWithKernel {
武毅 已提交
221 222 223
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override;
224 225 226 227

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
228 229 230 231

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override;
武毅 已提交
232 233
};

C
chengduoZH 已提交
234
class ConvOpGrad : public framework::OperatorWithKernel {
武毅 已提交
235 236 237
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override;
238

Q
qingqing01 已提交
239 240 241 242 243 244 245 246 247 248
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
};

class ConvOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override;

249 250 251
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
武毅 已提交
252 253
};

Q
QI JUN 已提交
254
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
255
class GemmConvKernel : public framework::OpKernel<T> {
256 257 258
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
H
hedaoyuan 已提交
259 260 261 262
    // The filter will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
263 264 265
    Tensor* output = context.Output<Tensor>("Output");
    output->mutable_data<T>(context.GetPlace());

L
liym27 已提交
266 267
    const int groups = context.Attr<int>("groups");
    const std::vector<int> strides = context.Attr<std::vector<int>>("strides");
268
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
C
chengduoZH 已提交
269
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
L
liym27 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
    const std::string padding_algorithm =
        context.Attr<std::string>("padding_algorithm");
    const std::string data_format = context.Attr<std::string>("data_format");
    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    Tensor transformed_input(input->type());
    Tensor transformed_output(output->type());

    if (channel_last) {
      ResizeToChannelFirst<DeviceContext, T>(context, input,
                                             &transformed_input);
      TransToChannelFirst<DeviceContext, T>(context, input, &transformed_input);

      ResizeToChannelFirst<DeviceContext, T>(context, output,
                                             &transformed_output);

    } else {
      transformed_input = *input;
      transformed_output = *output;
    }

    // update padding and dilation
    auto trans_in_dims = transformed_input.dims();
    auto filter_dims = filter.dims();

    framework::DDim in_data_dims =
        framework::slice_ddim(trans_in_dims, 2, trans_in_dims.size());
    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());

    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);
303

304 305
    auto& dev_ctx = context.template device_context<DeviceContext>();

L
liym27 已提交
306
    const int batch_size = static_cast<int>(transformed_input.dims()[0]);
C
chengduoZH 已提交
307

L
liym27 已提交
308 309
    // filter_shape_vec:
    // {k_o, k_i, k_h, k_w} or {k_o, k_i, k_d, k_h, k_w}
C
chengduoZH 已提交
310
    std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
L
liym27 已提交
311 312 313 314 315

    // output_shape_vec:
    // {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h, o_w}
    std::vector<int64_t> output_shape_vec(
        framework::vectorize(transformed_output.dims()));
316

H
hedaoyuan 已提交
317
    // use col_shape in the im2col calculation
L
liym27 已提交
318 319 320
    // col_shape_vec:
    // {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w,
    // o_d,o_h, o_w}
C
chengduoZH 已提交
321
    size_t data_dim = filter_shape_vec.size() - 2;
L
liym27 已提交
322

C
chengduoZH 已提交
323
    std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
L
liym27 已提交
324
    col_shape_vec[0] = trans_in_dims[1] / groups;
C
chengduoZH 已提交
325 326 327 328
    for (size_t j = 0; j < data_dim; ++j) {
      col_shape_vec[j + 1] = filter_shape_vec[j + 2];
      col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
    }
L
liym27 已提交
329

C
chengduoZH 已提交
330 331
    framework::DDim col_shape(framework::make_ddim(col_shape_vec));

H
hedaoyuan 已提交
332
    // use col_matrix_shape in the gemm calculation
L
liym27 已提交
333 334 335 336
    // size:
    // (i_c/g * k_h * k_w, o_h * o_w) or (i_c/g * k_d * k_h * k_w, o_d * o_h *
    // o_w)

C
chengduoZH 已提交
337
    framework::DDim col_matrix_shape =
L
liym27 已提交
338
        framework::flatten_to_2d(col_shape, data_dim);
C
chengduoZH 已提交
339

C
chengduoZH 已提交
340
    bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);
L
liym27 已提交
341

H
hedaoyuan 已提交
342
    Tensor col;
H
hedaoyuan 已提交
343 344 345
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
C
chengduoZH 已提交
346
    Tensor col_matrix;
C
chengduoZH 已提交
347
    if (is_expand) {
X
Xin Pan 已提交
348
      col = context.AllocateTmpTensor<T, DeviceContext>(col_shape, dev_ctx);
C
chengduoZH 已提交
349 350 351
      col_matrix.ShareDataWith(col);
      col_matrix.Resize(col_matrix_shape);
    }
352

L
liym27 已提交
353 354
    framework::DDim in_matrix_shape = framework::slice_ddim(
        transformed_input.dims(), 1, transformed_input.dims().size());
C
chengduoZH 已提交
355

H
hedaoyuan 已提交
356 357
    framework::DDim filter_matrix_shape = {filter.dims()[0],
                                           filter.numel() / filter.dims()[0]};
H
hedaoyuan 已提交
358 359
    filter.Resize(filter_matrix_shape);

C
chengduoZH 已提交
360
    framework::DDim output_matrix_shape = {
L
liym27 已提交
361 362 363
        transformed_output.dims()[1],
        transformed_output.numel() /
            (transformed_output.dims()[0] * transformed_output.dims()[1])};
C
chengduoZH 已提交
364 365

    // convolution operator: im2col(or vol2col) + gemm
L
liym27 已提交
366 367
    int in_step = static_cast<int>(transformed_input.dims()[1]) / groups;
    int out_step = static_cast<int>(transformed_output.dims()[1]) / groups;
C
chengduoZH 已提交
368

Q
QI JUN 已提交
369 370
    math::Vol2ColFunctor<DeviceContext, T> vol2col;
    math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
C
chengduoZH 已提交
371

Y
Yu Yang 已提交
372
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
C
chengduoZH 已提交
373
    for (int i = 0; i < batch_size; i++) {
L
liym27 已提交
374 375 376 377
      Tensor in_batch =
          transformed_input.Slice(i, i + 1).Resize(in_matrix_shape);
      Tensor out_batch =
          transformed_output.Slice(i, i + 1).Resize(output_matrix_shape);
C
chengduoZH 已提交
378

C
chengduoZH 已提交
379 380
      for (int g = 0; g < groups; g++) {
        Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);
H
hedaoyuan 已提交
381

C
chengduoZH 已提交
382
        if (!is_expand) {
C
chengduoZH 已提交
383 384 385
          col.ShareDataWith(in_slice);
          col_matrix.ShareDataWith(col);
          col_matrix.Resize(col_matrix_shape);
C
chengduoZH 已提交
386
        } else if (data_dim == 2U) {
Q
QI JUN 已提交
387
          im2col(dev_ctx, in_slice, dilations, strides,
L
liym27 已提交
388 389
                 std::vector<int>{paddings[0], paddings[2], paddings[1],
                                  paddings[3]},
C
chengduoZH 已提交
390
                 &col);
L
liym27 已提交
391

C
chengduoZH 已提交
392
        } else if (data_dim == 3U) {
Q
QI JUN 已提交
393
          vol2col(dev_ctx, in_slice, dilations, strides, paddings, &col);
C
chengduoZH 已提交
394
        }
C
chengduoZH 已提交
395 396 397 398

        // gemm
        Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
        Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
C
chengduoZH 已提交
399 400
        blas.MatMul(filter_slice, false, col_matrix, false, T(1.0), &out_slice,
                    T(0.0));
H
hedaoyuan 已提交
401
      }
402
    }
L
liym27 已提交
403 404 405 406
    if (channel_last) {
      TransToChannelLast<DeviceContext, T>(context, &transformed_output,
                                           output);
    }
407 408 409
  }
};

Q
QI JUN 已提交
410
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
411
class GemmConvGradKernel : public framework::OpKernel<T> {
412 413
 public:
  void Compute(const framework::ExecutionContext& context) const override {
H
hedaoyuan 已提交
414 415 416 417 418
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
H
hedaoyuan 已提交
419
    Tensor* filter_grad =
H
hedaoyuan 已提交
420
        context.Output<Tensor>(framework::GradVarName("Filter"));
H
hedaoyuan 已提交
421 422 423 424
    // The filter and filter_grad will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
H
hedaoyuan 已提交
425

C
chengduoZH 已提交
426 427
    if (!input_grad && !filter_grad) return;

C
chengduoZH 已提交
428
    int groups = context.Attr<int>("groups");
L
liym27 已提交
429
    const std::vector<int> strides = context.Attr<std::vector<int>>("strides");
H
hedaoyuan 已提交
430
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
C
chengduoZH 已提交
431
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
L
liym27 已提交
432 433 434 435 436 437 438 439
    const std::string padding_algorithm =
        context.Attr<std::string>("padding_algorithm");
    const std::string data_format = context.Attr<std::string>("data_format");

    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    Tensor transformed_input(input->type());
    Tensor transformed_output_grad(output_grad->type());
H
hedaoyuan 已提交
440

L
liym27 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
    if (channel_last) {
      ResizeToChannelFirst<DeviceContext, T>(context, input,
                                             &transformed_input);
      TransToChannelFirst<DeviceContext, T>(context, input, &transformed_input);

      ResizeToChannelFirst<DeviceContext, T>(context, output_grad,
                                             &transformed_output_grad);
      TransToChannelFirst<DeviceContext, T>(context, output_grad,
                                            &transformed_output_grad);
    } else {
      transformed_input = *input;
      transformed_output_grad = *output_grad;
    }

    // update padding and dilation
    auto in_dims = transformed_input.dims();
    auto filter_dims = filter.dims();
    framework::DDim in_data_dims =
        framework::slice_ddim(in_dims, 2, in_dims.size());
    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    const int batch_size = static_cast<int>(transformed_input.dims()[0]);
H
hedaoyuan 已提交
467

468 469
    auto& dev_ctx = context.template device_context<DeviceContext>();

C
chengduoZH 已提交
470
    // filter_shape_vec: {k_o, k_i, k_h, k_w} or {k_o, k_i, k_d, k_h, k_w}
C
chengduoZH 已提交
471
    std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
C
chengduoZH 已提交
472
    // output_shape_vec: {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h, o_w}
C
chengduoZH 已提交
473
    std::vector<int64_t> output_shape_vec(
L
liym27 已提交
474
        framework::vectorize(transformed_output_grad.dims()));
C
chengduoZH 已提交
475

C
chengduoZH 已提交
476 477 478
    // use col_shape in the im2col calculation
    // col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w, o_d,
    // o_h, o_w}
C
chengduoZH 已提交
479 480
    size_t data_dim = filter_shape_vec.size() - 2;
    std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
L
liym27 已提交
481
    col_shape_vec[0] = transformed_input.dims()[1] / groups;
C
chengduoZH 已提交
482 483 484 485
    for (size_t j = 0; j < data_dim; ++j) {
      col_shape_vec[j + 1] = filter_shape_vec[j + 2];
      col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
    }
C
chengduoZH 已提交
486
    framework::DDim col_shape(framework::make_ddim(col_shape_vec));
C
chengduoZH 已提交
487 488

    // use col_matrix_shape in the gemm calculation
C
chengduoZH 已提交
489 490 491 492
    // size: (i_c/g * k_h * k_w, o_h * o_w)
    // or
    // (i_c/g * k_d * k_h * k_w, o_d * o_h * o_w)
    framework::DDim col_matrix_shape =
C
chengduoZH 已提交
493
        framework::flatten_to_2d(col_shape, data_dim + 1);
C
chengduoZH 已提交
494

L
liym27 已提交
495 496
    framework::DDim input_shape = framework::slice_ddim(
        transformed_input.dims(), 1, transformed_input.dims().size());
C
chengduoZH 已提交
497

C
chengduoZH 已提交
498 499
    framework::DDim filter_matrix_shape = {filter.dims()[0],
                                           filter.numel() / filter.dims()[0]};
C
chengduoZH 已提交
500 501 502
    filter.Resize(filter_matrix_shape);

    framework::DDim output_matrix_shape = {
L
liym27 已提交
503 504 505
        transformed_output_grad.dims()[1],
        transformed_output_grad.numel() / (transformed_output_grad.dims()[0] *
                                           transformed_output_grad.dims()[1])};
C
chengduoZH 已提交
506

C
chengduoZH 已提交
507 508
    // convolution backward input operator:  gemm + col2im(or col2vol)
    // convolution backward weight operator: im2col(or vol2col) + gemm
L
liym27 已提交
509 510
    int in_step = static_cast<int>(transformed_input.dims()[1]) / groups;
    int out_step = static_cast<int>(transformed_output_grad.dims()[1]) / groups;
C
chengduoZH 已提交
511

C
chengduoZH 已提交
512
    bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);
L
liym27 已提交
513

C
chengduoZH 已提交
514 515 516 517
    Tensor col;
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
C
chengduoZH 已提交
518
    Tensor col_matrix;
C
chengduoZH 已提交
519
    if (is_expand) {
X
Xin Pan 已提交
520
      col = context.AllocateTmpTensor<T, DeviceContext>(col_shape, dev_ctx);
C
chengduoZH 已提交
521 522 523
      col_matrix.ShareDataWith(col);
      col_matrix.Resize(col_matrix_shape);
    }
C
chengduoZH 已提交
524

Q
QI JUN 已提交
525
    math::SetConstant<DeviceContext, T> set_zero;
Y
Yu Yang 已提交
526
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
C
chengduoZH 已提交
527 528 529

    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
L
liym27 已提交
530 531 532 533
      Tensor transformed_input_grad(input_grad->type());
      if (channel_last) {
        ResizeToChannelFirst<DeviceContext, T>(context, input_grad,
                                               &transformed_input_grad);
C
chengduoZH 已提交
534

L
liym27 已提交
535 536 537
      } else {
        transformed_input_grad = *input_grad;
      }
C
chengduoZH 已提交
538 539 540
      // if is_expand is false, the operation of set_zero is unnecessary,
      // because math::matmul will reset input_grad.
      if (is_expand) {
L
liym27 已提交
541
        set_zero(dev_ctx, &transformed_input_grad, static_cast<T>(0));
C
chengduoZH 已提交
542
      }
Q
QI JUN 已提交
543 544
      math::Col2VolFunctor<DeviceContext, T> col2vol;
      math::Col2ImFunctor<math::ColFormat::kCFO, DeviceContext, T> col2im;
C
chengduoZH 已提交
545

C
chengduoZH 已提交
546 547
      for (int i = 0; i < batch_size; i++) {
        Tensor out_grad_batch =
L
liym27 已提交
548 549 550
            transformed_output_grad.Slice(i, i + 1).Resize(output_matrix_shape);
        Tensor in_grad_batch =
            transformed_input_grad.Slice(i, i + 1).Resize(input_shape);
C
chengduoZH 已提交
551 552 553 554 555 556 557 558 559 560
        for (int g = 0; g < groups; g++) {
          // gemm
          Tensor out_grad_slice =
              out_grad_batch.Slice(g * out_step, (g + 1) * out_step);
          Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);

          Tensor in_grad_slice =
              in_grad_batch.Slice(g * in_step, (g + 1) * in_step);

          if (!is_expand) {
C
chengduoZH 已提交
561 562
            col_matrix.ShareDataWith(in_grad_slice);
            col_matrix.Resize(col_matrix_shape);
C
chengduoZH 已提交
563
          }
C
chengduoZH 已提交
564 565
          blas.MatMul(filter_slice, true, out_grad_slice, false, T(1.0),
                      &col_matrix, T(0.0));
C
chengduoZH 已提交
566

C
chengduoZH 已提交
567
          if (is_expand && data_dim == 2U) {
Q
QI JUN 已提交
568
            col2im(dev_ctx, col, dilations, strides,
L
liym27 已提交
569 570
                   std::vector<int>{paddings[0], paddings[2], paddings[1],
                                    paddings[3]},
C
chengduoZH 已提交
571
                   &in_grad_slice);
C
chengduoZH 已提交
572
          } else if (is_expand && data_dim == 3U) {
Q
QI JUN 已提交
573
            col2vol(dev_ctx, col, dilations, strides, paddings, &in_grad_slice);
C
chengduoZH 已提交
574
          }
C
chengduoZH 已提交
575 576
        }
      }
L
liym27 已提交
577 578 579 580
      if (channel_last) {
        TransToChannelLast<DeviceContext, T>(context, &transformed_input_grad,
                                             input_grad);
      }
C
chengduoZH 已提交
581 582 583 584 585 586
    }

    if (filter_grad) {
      filter_grad->mutable_data<T>(context.GetPlace());
      Tensor filter_grad_ = *filter_grad;
      filter_grad_.Resize(filter_matrix_shape);
Q
QI JUN 已提交
587 588 589
      set_zero(dev_ctx, filter_grad, static_cast<T>(0));
      math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
      math::Vol2ColFunctor<DeviceContext, T> vol2col;
C
chengduoZH 已提交
590 591
      for (int i = 0; i < batch_size; i++) {
        Tensor out_grad_batch =
L
liym27 已提交
592 593
            transformed_output_grad.Slice(i, i + 1).Resize(output_matrix_shape);
        Tensor in_batch = transformed_input.Slice(i, i + 1).Resize(input_shape);
C
chengduoZH 已提交
594 595 596 597 598
        for (int g = 0; g < groups; g++) {
          // im2col
          Tensor out_grad_slice =
              out_grad_batch.Slice(g * out_step, (g + 1) * out_step);
          Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);
C
chengduoZH 已提交
599

C
chengduoZH 已提交
600
          if (!is_expand) {
C
chengduoZH 已提交
601 602 603
            col.ShareDataWith(in_slice);
            col_matrix.ShareDataWith(col);
            col_matrix.Resize(col_matrix_shape);
C
chengduoZH 已提交
604
          } else if (data_dim == 2U) {
Q
QI JUN 已提交
605
            im2col(dev_ctx, in_slice, dilations, strides,
L
liym27 已提交
606 607
                   std::vector<int>{paddings[0], paddings[2], paddings[1],
                                    paddings[3]},
C
chengduoZH 已提交
608
                   &col);
L
liym27 已提交
609

C
chengduoZH 已提交
610
          } else if (data_dim == 3U) {
Q
QI JUN 已提交
611
            vol2col(dev_ctx, in_slice, dilations, strides, paddings, &col);
C
chengduoZH 已提交
612
          }
C
chengduoZH 已提交
613 614 615 616

          // gemm
          Tensor filter_grad_slice =
              filter_grad_.Slice(g * out_step, (g + 1) * out_step);
C
chengduoZH 已提交
617 618
          blas.MatMul(out_grad_slice, false, col_matrix, true, T(1.0),
                      &filter_grad_slice, T(1.0));
C
chengduoZH 已提交
619 620 621 622 623
        }
      }
    }
  }
};
Z
zlx 已提交
624

L
lvmengsi 已提交
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
template <typename DeviceContext, typename T>
class GemmConvDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      "It must use CPUPlace.");
    const Tensor* X = ctx.Input<Tensor>("Input");
    const Tensor* dY = ctx.Input<Tensor>("DOutput");
    const Tensor* ddX = ctx.Input<Tensor>("DDInput");
    const Tensor* ddW_in = ctx.Input<Tensor>("DDFilter");

    Tensor* ddY = ctx.Output<Tensor>("DDOutput");
    Tensor* dW = ctx.Output<Tensor>("DFilter");
    Tensor* dX = ctx.Output<Tensor>("DInput");
    Tensor W = detail::Ref(ctx.Input<Tensor>("Filter"),
                           "Cannot find input Filter(%s) in scope)",
                           ctx.Inputs("Filter")[0]);
    if (!ddY && !dW && !dX) return;
L
liym27 已提交
644 645 646

    const int groups = ctx.Attr<int>("groups");
    const std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
L
lvmengsi 已提交
647 648
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
L
liym27 已提交
649 650 651 652 653 654 655 656 657
    const std::string padding_algorithm =
        ctx.Attr<std::string>("padding_algorithm");
    const std::string data_format = ctx.Attr<std::string>("data_format");

    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    // transform Tensor
    Tensor transformed_X(X->type());
    Tensor transformed_dY(dY->type());
658
    Tensor transformed_ddX(X->type());
L
liym27 已提交
659 660 661 662 663 664 665 666

    if (channel_last) {
      ResizeToChannelFirst<DeviceContext, T>(ctx, X, &transformed_X);
      TransToChannelFirst<DeviceContext, T>(ctx, X, &transformed_X);

      ResizeToChannelFirst<DeviceContext, T>(ctx, dY, &transformed_dY);
      TransToChannelFirst<DeviceContext, T>(ctx, dY, &transformed_dY);

667 668 669 670
      if (ddX) {
        ResizeToChannelFirst<DeviceContext, T>(ctx, ddX, &transformed_ddX);
        TransToChannelFirst<DeviceContext, T>(ctx, ddX, &transformed_ddX);
      }
L
liym27 已提交
671 672 673
    } else {
      transformed_X = *X;
      transformed_dY = *dY;
674 675 676
      if (ddX) {
        transformed_ddX = *ddX;
      }
L
liym27 已提交
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
    }

    // update padding and dilation
    auto in_dims = transformed_X.dims();
    auto filter_dims = W.dims();

    framework::DDim in_data_dims =
        framework::slice_ddim(in_dims, 2, in_dims.size());
    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    const int batch_size = static_cast<int>(transformed_X.dims()[0]);
L
lvmengsi 已提交
692
    std::vector<int64_t> filter_shape_vec(framework::vectorize(W.dims()));
L
liym27 已提交
693 694
    std::vector<int64_t> output_shape_vec(
        framework::vectorize(transformed_dY.dims()));
L
lvmengsi 已提交
695 696 697 698

    size_t data_dim = filter_shape_vec.size() - 2;
    std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
    // col_shape [in_channel/group, kh, kw, oh, ow]
L
liym27 已提交
699
    col_shape_vec[0] = transformed_X.dims()[1] / groups;
L
lvmengsi 已提交
700 701 702 703 704 705 706 707 708
    for (size_t j = 0; j < data_dim; ++j) {
      col_shape_vec[j + 1] = filter_shape_vec[j + 2];
      col_shape_vec[j + data_dim + 1] = output_shape_vec[j + 2];
    }
    framework::DDim col_shape(framework::make_ddim(col_shape_vec));
    // col_matrix_shape [in_channel/group * kh * kw, oh * ow]
    framework::DDim col_matrix_shape =
        framework::flatten_to_2d(col_shape, data_dim + 1);
    // input_shape [Cin, H, W]
L
liym27 已提交
709 710
    framework::DDim input_shape = framework::slice_ddim(
        transformed_X.dims(), 1, transformed_X.dims().size());
L
lvmengsi 已提交
711 712 713 714 715 716
    // filter_matrix_shape [Cout, Cin * kh * kw]
    framework::DDim filter_matrix_shape = {W.dims()[0],
                                           W.numel() / W.dims()[0]};

    W.Resize(filter_matrix_shape);
    framework::DDim output_matrix_shape = {
L
liym27 已提交
717 718 719 720 721
        transformed_dY.dims()[1],
        transformed_dY.numel() /
            (transformed_dY.dims()[0] * transformed_dY.dims()[1])};
    int in_step = static_cast<int>(transformed_X.dims()[1]) / groups;
    int out_step = static_cast<int>(transformed_dY.dims()[1]) / groups;
L
lvmengsi 已提交
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741

    bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);
    Tensor col;
    Tensor col_matrix;
    if (is_expand) {
      col = ctx.AllocateTmpTensor<T, DeviceContext>(col_shape, dev_ctx);
      col_matrix.ShareDataWith(col);
      col_matrix.Resize(col_matrix_shape);
    }

    math::SetConstant<DeviceContext, T> set_zero;
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);

    // dx convolution double grad:  gemm + col2im(col2vol)
    // dx = ddw * dy  ==> dx(N, Cin, H, W), ddw(Cout, Cin, kh, kw), dy(N, Cout,
    // oH, oW)
    if (dX && ddW_in) {
      Tensor ddW;
      ddW.ShareDataWith(*ddW_in).Resize(filter_matrix_shape);
      dX->mutable_data<T>(ctx.GetPlace());
L
liym27 已提交
742 743 744 745 746 747 748 749 750

      Tensor transformed_dX(dX->type());

      if (channel_last) {
        ResizeToChannelFirst<DeviceContext, T>(ctx, dX, &transformed_dX);

      } else {
        transformed_dX = *dX;
      }
L
lvmengsi 已提交
751 752 753
      // if is_expand is false, the operation of set_zero is unnecessary
      // because math::matmul will reset dx
      if (is_expand) {
L
liym27 已提交
754
        set_zero(dev_ctx, &transformed_dX, static_cast<T>(0));
L
lvmengsi 已提交
755 756 757 758 759
      }
      math::Col2VolFunctor<DeviceContext, T> col2vol;
      math::Col2ImFunctor<math::ColFormat::kCFO, DeviceContext, T> col2im;

      for (int i = 0; i < batch_size; i++) {
L
liym27 已提交
760 761 762
        Tensor dy_batch =
            transformed_dY.Slice(i, i + 1).Resize(output_matrix_shape);
        Tensor dx_batch = transformed_dX.Slice(i, i + 1).Resize(input_shape);
L
lvmengsi 已提交
763 764 765 766 767 768 769 770 771 772 773 774 775 776
        for (int g = 0; g < groups; g++) {
          // gemm
          Tensor dy_slice = dy_batch.Slice(g * out_step, (g + 1) * out_step);
          Tensor ddw_slice = ddW.Slice(g * out_step, (g + 1) * out_step);
          Tensor dx_slice = dx_batch.Slice(g * in_step, (g + 1) * in_step);
          if (!is_expand) {
            col_matrix.ShareDataWith(dx_slice);
            col_matrix.Resize(col_matrix_shape);
          }
          blas.MatMul(ddw_slice, true, dy_slice, false, T(1.0), &col_matrix,
                      T(0.0));

          if (is_expand && data_dim == 2U) {
            col2im(dev_ctx, col, dilations, strides,
L
liym27 已提交
777 778
                   std::vector<int>{paddings[0], paddings[2], paddings[1],
                                    paddings[3]},
L
lvmengsi 已提交
779 780 781 782 783 784
                   &dx_slice);
          } else if (is_expand && data_dim == 3U) {
            col2vol(dev_ctx, col, dilations, strides, paddings, &dx_slice);
          }
        }
      }
L
liym27 已提交
785 786 787
      if (channel_last) {
        TransToChannelLast<DeviceContext, T>(ctx, &transformed_dX, dX);
      }
L
lvmengsi 已提交
788 789 790 791 792
    }

    // dw = ddx * dy  ==> dw(Cout, Cin, kh, kw), ddx(N, Cin, H, W), dy(N, Cout,
    // oH, oW)
    // dw convolution double grad:  im2col(vol2col) + gemm
L
lvmengsi 已提交
793
    if (dW && ddX) {
L
lvmengsi 已提交
794 795 796 797 798 799 800
      dW->mutable_data<T>(ctx.GetPlace());
      set_zero(dev_ctx, dW, static_cast<T>(0));
      Tensor dW_arr = *dW;
      dW_arr.Resize(filter_matrix_shape);
      math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
      math::Vol2ColFunctor<DeviceContext, T> vol2col;
      for (int i = 0; i < batch_size; ++i) {
L
liym27 已提交
801 802 803
        Tensor dy_batch =
            transformed_dY.Slice(i, i + 1).Resize(output_matrix_shape);
        Tensor ddx_batch = transformed_ddX.Slice(i, i + 1).Resize(input_shape);
L
lvmengsi 已提交
804 805 806 807 808 809 810 811 812 813
        for (int g = 0; g < groups; ++g) {
          // im2col
          Tensor dy_slice = dy_batch.Slice(g * out_step, (g + 1) * out_step);
          Tensor ddx_slice = ddx_batch.Slice(g * in_step, (g + 1) * in_step);
          if (!is_expand) {
            col.ShareDataWith(ddx_slice);
            col_matrix.ShareDataWith(col);
            col_matrix.Resize(col_matrix_shape);
          } else if (data_dim == 2U) {
            im2col(dev_ctx, ddx_slice, dilations, strides,
L
liym27 已提交
814 815
                   std::vector<int>{paddings[0], paddings[2], paddings[1],
                                    paddings[3]},
L
lvmengsi 已提交
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
                   &col);
          } else if (data_dim == 3U) {
            vol2col(dev_ctx, ddx_slice, dilations, strides, paddings, &col);
          }

          Tensor dw_slice = dW_arr.Slice(g * out_step, (g + 1) * out_step);
          blas.MatMul(dy_slice, false, col_matrix, true, T(1.0), &dw_slice,
                      T(1.0));
        }
      }
    }

    // ddy = w * ddx + x * ddw ==> ddy(N, Cout, oH, oW), x/ddx(N, Cin, H, W),
    // w/ddw(Cout, Cin, kh, kw)
    // ddy convolution double grad: im2col(vol2col) + gemm
    if (ddY) {
      ddY->mutable_data<T>(ctx.GetPlace());
L
liym27 已提交
833 834 835 836 837 838 839 840 841

      Tensor transformed_ddY(ddY->type());
      if (channel_last) {
        ResizeToChannelFirst<DeviceContext, T>(ctx, ddY, &transformed_ddY);
      } else {
        transformed_ddY = *ddY;
      }

      set_zero(dev_ctx, &transformed_ddY, static_cast<T>(0));
L
lvmengsi 已提交
842 843 844
      math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
      math::Vol2ColFunctor<DeviceContext, T> vol2col;
      for (int i = 0; i < batch_size; ++i) {
L
liym27 已提交
845 846
        Tensor ddy_batch =
            transformed_ddY.Slice(i, i + 1).Resize(output_matrix_shape);
L
lvmengsi 已提交
847
        for (int g = 0; g < groups; ++g) {
L
liym27 已提交
848
          // gemm
L
lvmengsi 已提交
849
          Tensor ddy_slice = ddy_batch.Slice(g * out_step, (g + 1) * out_step);
L
liym27 已提交
850

L
lvmengsi 已提交
851
          if (ddX) {
L
liym27 已提交
852 853
            Tensor ddx_batch =
                transformed_ddX.Slice(i, i + 1).Resize(input_shape);
L
lvmengsi 已提交
854 855 856 857 858 859 860
            Tensor ddx_slice = ddx_batch.Slice(g * in_step, (g + 1) * in_step);
            if (!is_expand) {
              col.ShareDataWith(ddx_slice);
              col_matrix.ShareDataWith(col);
              col_matrix.Resize(col_matrix_shape);
            } else if (data_dim == 2U) {
              im2col(dev_ctx, ddx_slice, dilations, strides,
L
liym27 已提交
861 862
                     std::vector<int>{paddings[0], paddings[2], paddings[1],
                                      paddings[3]},
L
lvmengsi 已提交
863 864 865 866
                     &col);
            } else if (data_dim == 3U) {
              vol2col(dev_ctx, ddx_slice, dilations, strides, paddings, &col);
            }
867 868 869
            Tensor w_slice = W.Slice(g * out_step, (g + 1) * out_step);
            blas.MatMul(w_slice, false, col_matrix, false, T(1.0), &ddy_slice,
                        T(0.0));
L
lvmengsi 已提交
870
          }
L
lvmengsi 已提交
871 872

          if (ddW_in) {
L
liym27 已提交
873
            Tensor x_batch = transformed_X.Slice(i, i + 1).Resize(input_shape);
L
lvmengsi 已提交
874
            Tensor x_slice = x_batch.Slice(g * in_step, (g + 1) * in_step);
L
lvmengsi 已提交
875

L
liym27 已提交
876 877
            Tensor ddW;
            ddW.ShareDataWith(*ddW_in).Resize(filter_matrix_shape);
L
lvmengsi 已提交
878 879 880 881 882 883
            if (!is_expand) {
              col.ShareDataWith(x_slice);
              col_matrix.ShareDataWith(col);
              col_matrix.Resize(col_matrix_shape);
            } else if (data_dim == 2U) {
              im2col(dev_ctx, x_slice, dilations, strides,
L
liym27 已提交
884 885
                     std::vector<int>{paddings[0], paddings[2], paddings[1],
                                      paddings[3]},
L
lvmengsi 已提交
886 887 888 889 890 891 892 893 894 895 896 897
                     &col);
            } else if (data_dim == 3U) {
              vol2col(dev_ctx, x_slice, dilations, strides, paddings, &col);
            }

            // gemm
            Tensor ddw_slice = ddW.Slice(g * out_step, (g + 1) * out_step);
            blas.MatMul(ddw_slice, false, col_matrix, false, T(1.0), &ddy_slice,
                        T(1.0));
          }
        }
      }
L
liym27 已提交
898 899 900
      if (channel_last) {
        TransToChannelLast<DeviceContext, T>(ctx, &transformed_ddY, ddY);
      }
L
lvmengsi 已提交
901 902 903 904
    }
  }
};

Z
zlx 已提交
905 906 907 908 909 910 911 912 913
template <typename DeviceContext, typename T>
class DepthwiseConvKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    Tensor filter = *context.Input<Tensor>("Filter");
    Tensor* output = context.Output<Tensor>("Output");
    output->mutable_data<T>(context.GetPlace());

L
liym27 已提交
914
    const std::vector<int> strides = context.Attr<std::vector<int>>("strides");
Z
zlx 已提交
915 916
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
917
    bool fuse_relu = context.Attr<bool>("fuse_relu_before_depthwise_conv");
L
liym27 已提交
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970

    const std::string padding_algorithm =
        context.Attr<std::string>("padding_algorithm");
    const std::string data_format = context.Attr<std::string>("data_format");

    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");
    if (channel_last) {
      PADDLE_ENFORCE_EQ(
          output->dims()[output->dims().size() - 1] %
              input->dims()[input->dims().size() - 1],
          0, "The output channels must be a multiple of the input channels");
    } else {
      PADDLE_ENFORCE_EQ(
          output->dims()[1] % input->dims()[1], 0,
          "The output channels must be a multiple of the input channels");
    }
    // transform tensor
    Tensor transformed_input(input->type());
    Tensor transformed_output(output->type());

    if (channel_last) {
      ResizeToChannelFirst<DeviceContext, T>(context, input,
                                             &transformed_input);
      TransToChannelFirst<DeviceContext, T>(context, input, &transformed_input);

      ResizeToChannelFirst<DeviceContext, T>(context, output,
                                             &transformed_output);

    } else {
      transformed_input = *input;
      transformed_output = *output;
    }

    // update padding and dilation
    auto in_dims = transformed_input.dims();
    auto filter_dims = filter.dims();

    framework::DDim in_data_dims;
    in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());

    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    bool is_sys_pad = strides.size() * 2 == paddings.size() ? false : true;
    if (!is_sys_pad) {
      for (size_t i = 0; i < strides.size(); ++i) {
        paddings.erase(paddings.begin() + i + 1);
      }
    }

Z
zlx 已提交
971
    auto& dev_ctx = context.template device_context<DeviceContext>();
972 973 974

    if (fuse_relu) {
      math::DepthwiseConvFunctor<DeviceContext, T, true> depthwiseConv;
L
liym27 已提交
975 976
      depthwiseConv(dev_ctx, transformed_input, filter, strides, paddings,
                    dilations, &transformed_output);
977 978
    } else {
      math::DepthwiseConvFunctor<DeviceContext, T, false> depthwiseConv;
L
liym27 已提交
979 980 981 982 983 984
      depthwiseConv(dev_ctx, transformed_input, filter, strides, paddings,
                    dilations, &transformed_output);
    }
    if (channel_last) {
      TransToChannelLast<DeviceContext, T>(context, &transformed_output,
                                           output);
985
    }
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
  }
};

template <typename DeviceContext, typename T>
class DepthwiseConvGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad =
        context.Output<Tensor>(framework::GradVarName("Filter"));
    Tensor filter = *context.Input<Tensor>("Filter");

    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
1007
    bool fuse_relu = context.Attr<bool>("fuse_relu_before_depthwise_conv");
L
liym27 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016
    const std::string padding_algorithm =
        context.Attr<std::string>("padding_algorithm");
    const std::string data_format = context.Attr<std::string>("data_format");

    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    // transform Tensor
    Tensor transformed_input(input->type());
    Tensor transformed_output_grad(output_grad->type());
1017

L
liym27 已提交
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
    if (channel_last) {
      ResizeToChannelFirst<DeviceContext, T>(context, input,
                                             &transformed_input);
      TransToChannelFirst<DeviceContext, T>(context, input, &transformed_input);

      ResizeToChannelFirst<DeviceContext, T>(context, output_grad,
                                             &transformed_output_grad);
      TransToChannelFirst<DeviceContext, T>(context, output_grad,
                                            &transformed_output_grad);

    } else {
      transformed_input = *input;
      transformed_output_grad = *output_grad;
    }

    // update padding and dilation
    auto in_dims = transformed_input.dims();
    auto filter_dims = filter.dims();

    framework::DDim in_data_dims;
    in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    bool is_sys_pad = strides.size() * 2 == paddings.size() ? false : true;
    if (!is_sys_pad) {
      for (size_t i = 0; i < strides.size(); ++i) {
        paddings.erase(paddings.begin() + i + 1);
      }
    }
1051 1052 1053 1054 1055
    math::SetConstant<DeviceContext, T> set_zero;
    auto& dev_ctx = context.template device_context<DeviceContext>();

    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
L
liym27 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
      Tensor transformed_input_grad(input_grad->type());
      if (channel_last) {
        ResizeToChannelFirst<DeviceContext, T>(context, input_grad,
                                               &transformed_input_grad);

      } else {
        transformed_input_grad = *input_grad;
      }

      set_zero(dev_ctx, &transformed_input_grad, static_cast<T>(0));
1066 1067 1068 1069

      if (fuse_relu) {
        math::DepthwiseConvInputGradFunctor<DeviceContext, T, true>
            depthwiseConvInputGrad;
L
liym27 已提交
1070 1071 1072
        depthwiseConvInputGrad(dev_ctx, transformed_input, filter,
                               transformed_output_grad, strides, paddings,
                               dilations, &transformed_input_grad);
1073 1074 1075
      } else {
        math::DepthwiseConvInputGradFunctor<DeviceContext, T, false>
            depthwiseConvInputGrad;
L
liym27 已提交
1076 1077 1078 1079 1080 1081 1082
        depthwiseConvInputGrad(dev_ctx, transformed_input, filter,
                               transformed_output_grad, strides, paddings,
                               dilations, &transformed_input_grad);
      }
      if (channel_last) {
        TransToChannelLast<DeviceContext, T>(context, &transformed_input_grad,
                                             input_grad);
1083
      }
1084 1085 1086 1087 1088
    }

    if (filter_grad) {
      filter_grad->mutable_data<T>(context.GetPlace());
      set_zero(dev_ctx, filter_grad, static_cast<T>(0));
1089 1090 1091
      if (fuse_relu) {
        math::DepthwiseConvFilterGradFunctor<DeviceContext, T, true>
            depthwiseConvFilterGrad;
L
liym27 已提交
1092 1093 1094
        depthwiseConvFilterGrad(dev_ctx, transformed_input,
                                transformed_output_grad, strides, paddings,
                                dilations, filter_grad);
1095 1096 1097
      } else {
        math::DepthwiseConvFilterGradFunctor<DeviceContext, T, false>
            depthwiseConvFilterGrad;
L
liym27 已提交
1098 1099 1100
        depthwiseConvFilterGrad(dev_ctx, transformed_input,
                                transformed_output_grad, strides, paddings,
                                dilations, filter_grad);
1101
      }
1102
    }
Z
zlx 已提交
1103 1104 1105
  }
};

1106 1107
}  // namespace operators
}  // namespace paddle