data_transform.cc 4.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/data_transform.h"
16

Y
Yi Wang 已提交
17 18 19
#include "paddle/fluid/framework/data_device_transform.h"
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/data_type_transform.h"
Q
Qiao Longfei 已提交
20

21
#ifdef PADDLE_WITH_MKLDNN
22
#include <algorithm>
23 24 25
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

Q
Qiao Longfei 已提交
26 27 28
namespace paddle {
namespace framework {

Y
yuyang18 已提交
29
static void PassTensorData(Tensor *from, Tensor *to) {
30 31 32 33
  to->ShareDataWith(*from);
  *from = Tensor();
}

Y
yuyang18 已提交
34 35 36
void TransformData(const OpKernelType &expected_kernel_type,
                   const OpKernelType &kernel_type_for_var,
                   const Tensor &input_tensor, Tensor *output_tensor) {
37 38 39 40
  bool transformed = false;
  Tensor in;
  in.ShareDataWith(input_tensor);
  Tensor out;
M
mozga-intel 已提交
41 42
  DataLayout lin = kernel_type_for_var.data_layout_;
  DataLayout lout = expected_kernel_type.data_layout_;
43 44

  // do layout transform
M
mozga-intel 已提交
45
  if (NeedTransformLayout(lout, lin)) {
46
#ifdef PADDLE_WITH_MKLDNN
M
mozga-intel 已提交
47 48 49 50 51 52 53 54
    if (lin == DataLayout::kMKLDNN || lout == DataLayout::kMKLDNN) {
      PADDLE_ENFORCE(
          !(lin == DataLayout::kMKLDNN && lout == DataLayout::kMKLDNN),
          "No layout transform needed between two MKLDNN OPKernels");

      if (lin != DataLayout::kMKLDNN && lout == DataLayout::kMKLDNN) {
        // Case1 - transform from Non-MKLDNN OPKernel to MKLDNN OPKernel
        // Just set layout/format. No real transform occur
55

56 57 58
        auto out_format = platform::MKLDNNFormatForSize(in.dims().size(),
                                                        ToMKLDNNFormat(lin));
        out.ShareDataWith(input_tensor);
59 60 61 62 63 64 65 66 67
        // For NHWC data we need reshape of tensors as MKL-DNN
        // is expecting NHWC dims description order
        if (lin == DataLayout::kNHWC) {
          auto nchw_dims = paddle::framework::vectorize<int>(out.dims());
          std::rotate(nchw_dims.begin() + 1, nchw_dims.end() - 1,
                      nchw_dims.end());
          out.Resize(framework::make_ddim(nchw_dims));
          paddle::platform::set_cur_paddle_data_layout(lin);
        }
68 69
        out.set_layout(DataLayout::kMKLDNN);
        out.set_format(out_format);
M
mozga-intel 已提交
70 71 72 73 74 75 76 77 78 79
      } else {
        // Case2 - transfrom from MKLDNN OPKernel to Non-MKLDNN OPKernel
        // Do transform via MKLDNN lib
        TransDataLayoutFromMKLDNN(kernel_type_for_var, expected_kernel_type, in,
                                  &out);
      }
    } else {
      // Case3 - transfrom between Non-MKLDNN OPKernels
      TransDataLayout(kernel_type_for_var, expected_kernel_type, in, &out);
    }
80 81 82 83
#else
    // Case3 - transfrom between Non-MKLDNN OPKernels
    TransDataLayout(kernel_type_for_var, expected_kernel_type, in, &out);
#endif
84 85 86 87
    transformed = true;
    PassTensorData(&out, &in);
  }

88
  // do data type transform
Q
Qiao Longfei 已提交
89 90 91 92 93 94
  if (expected_kernel_type.data_type_ != kernel_type_for_var.data_type_) {
    TransDataType(kernel_type_for_var, expected_kernel_type, in, &out);
    transformed = true;
    PassTensorData(&out, &in);
  }

95
  // do device transform
96 97
  if (!platform::is_same_place(kernel_type_for_var.place_,
                               expected_kernel_type.place_)) {
Q
Qiao Longfei 已提交
98
    TransDataDevice(in, expected_kernel_type.place_, &out);
99 100
    transformed = true;
    PassTensorData(&out, &in);
101
  }
102

Q
Qiao Longfei 已提交
103
  PADDLE_ENFORCE(transformed, "No transform is applied, please check!");
104 105
  // get output data
  output_tensor->ShareDataWith(in);
106 107
}

Y
yuyang18 已提交
108 109
void SetTensorToVariable(const Variable &in_var, const Tensor &tensor,
                         Variable *out_var) {
110
  if (in_var.IsType<LoDTensor>()) {
Y
yuyang18 已提交
111 112
    auto &in_lod_tensor = in_var.Get<LoDTensor>();
    auto *tran_lod_tensor = out_var->GetMutable<LoDTensor>();
113 114 115 116
    tran_lod_tensor->set_lod(in_lod_tensor.lod());
    tran_lod_tensor->set_layout(in_lod_tensor.layout());
    tran_lod_tensor->ShareDataWith(tensor);
  } else if (in_var.IsType<SelectedRows>()) {
Y
yuyang18 已提交
117 118
    auto &in_selected_rows = in_var.Get<SelectedRows>();
    auto *trans_selected_rows = out_var->GetMutable<SelectedRows>();
119 120 121 122 123 124 125 126
    trans_selected_rows->set_height(in_selected_rows.height());
    trans_selected_rows->set_rows(in_selected_rows.rows());
    trans_selected_rows->mutable_value()->ShareDataWith(tensor);
  } else {
    PADDLE_THROW("unknown var type");
  }
}

Q
Qiao Longfei 已提交
127 128
}  // namespace framework
}  // namespace paddle