pooling.cu 113.0 KB
Newer Older
F
From00 已提交
1
/* Copyright (c) 2022 paddlepaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

C
chengduo 已提交
15 16
#include <algorithm>
#include <vector>
17

18
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
L
limingshu 已提交
19
#include "paddle/fluid/platform/fast_divmod.h"
F
From00 已提交
20
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
21
#include "paddle/phi/kernels/funcs/pooling.h"
22
#include "paddle/phi/kernels/funcs/reduce_function.h"
C
chengduoZH 已提交
23

F
From00 已提交
24 25
namespace phi {
namespace funcs {
C
chengduoZH 已提交
26

L
limingshu 已提交
27 28
struct FastDivModForPooling {
 public:
F
From00 已提交
29 30 31
  paddle::platform::FastDivMod channel;
  paddle::platform::FastDivMod width;
  paddle::platform::FastDivMod height;
L
limingshu 已提交
32 33 34 35

  explicit HOSTDEVICE FastDivModForPooling(const int channels,
                                           const int output_width,
                                           const int output_height) {
F
From00 已提交
36 37 38
    channel = paddle::platform::FastDivMod(channels);
    width = paddle::platform::FastDivMod(output_width);
    height = paddle::platform::FastDivMod(output_height);
L
limingshu 已提交
39 40 41
  }
};

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
struct FastDivModForPooling3D {
 public:
  paddle::platform::FastDivMod channel;
  paddle::platform::FastDivMod width;
  paddle::platform::FastDivMod height;
  paddle::platform::FastDivMod depth;

  explicit HOSTDEVICE FastDivModForPooling3D(const int channels,
                                             const int output_width,
                                             const int output_height,
                                             const int output_depth) {
    channel = paddle::platform::FastDivMod(channels);
    width = paddle::platform::FastDivMod(output_width);
    height = paddle::platform::FastDivMod(output_height);
    depth = paddle::platform::FastDivMod(output_depth);
  }
};

L
limingshu 已提交
60 61
struct FastDivModForPoolingWithMoreStaff {
 public:
F
From00 已提交
62 63 64 65 66 67 68
  paddle::platform::FastDivMod channel;
  paddle::platform::FastDivMod width;
  paddle::platform::FastDivMod height;
  paddle::platform::FastDivMod ksize_w;
  paddle::platform::FastDivMod ksize_h;
  paddle::platform::FastDivMod stride_w;
  paddle::platform::FastDivMod stride_h;
L
limingshu 已提交
69 70

  explicit HOSTDEVICE FastDivModForPoolingWithMoreStaff(
F
From00 已提交
71 72 73 74 75 76
      const int channels,
      const int input_width,
      const int input_height,
      const int ksize_width,
      const int ksize_height,
      const int stride_width,
L
limingshu 已提交
77
      const int stride_height) {
F
From00 已提交
78 79 80 81 82 83 84
    channel = paddle::platform::FastDivMod(channels);
    width = paddle::platform::FastDivMod(input_width);
    height = paddle::platform::FastDivMod(input_height);
    ksize_w = paddle::platform::FastDivMod(ksize_width);
    ksize_h = paddle::platform::FastDivMod(ksize_height);
    stride_w = paddle::platform::FastDivMod(stride_width);
    stride_h = paddle::platform::FastDivMod(stride_height);
L
limingshu 已提交
85 86 87 88
  }
};

template <typename FastDivModForPooling>
F
From00 已提交
89 90 91 92 93 94 95 96 97 98 99
__device__ void OffsetPreparationFor4Dimension(int index,
                                               bool channel_last,
                                               FastDivModForPooling divmods,
                                               const int pad_width,
                                               const int pad_height,
                                               const int aux_width,
                                               const int aux_height,
                                               int* w_offset,
                                               int* h_offset,
                                               int* c_offset,
                                               int* stride) {
L
limingshu 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
  if (!channel_last) { /* NCHW */
    auto input_width_divmod = divmods.width.Divmod(index);
    auto input_height_divmod = divmods.height.Divmod(input_width_divmod.val[0]);
    auto channel_divmod = divmods.channel.Divmod(input_height_divmod.val[0]);
    *w_offset = input_width_divmod.val[1] + pad_width;
    *h_offset = input_height_divmod.val[1] + pad_height;
    *c_offset = channel_divmod.val[1];
    *stride = (channel_divmod.val[0] * divmods.channel.divisor + *c_offset) *
              aux_height * aux_width;
  } else { /* NHWC */
    auto c_divmod = divmods.channel.Divmod(index);
    auto input_width_divmod = divmods.width.Divmod(c_divmod.val[0]);
    auto input_height_divmod = divmods.height.Divmod(input_width_divmod.val[0]);
    *c_offset = c_divmod.val[1];
    *w_offset = input_width_divmod.val[1] + pad_width;
    *h_offset = input_height_divmod.val[1] + pad_height;
    *stride = input_height_divmod.val[0] * aux_height * aux_width *
              divmods.channel.divisor;
  }
}

121
template <typename PoolProcess, typename T>
F
From00 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
__global__ void KernelPool2D(const int nthreads,
                             const T* input_data,
                             const int channels,
                             const int input_height,
                             const int input_width,
                             const int output_height,
                             const int output_width,
                             const int ksize_height,
                             const int ksize_width,
                             const int stride_height,
                             const int stride_width,
                             const int padding_height,
                             const int padding_width,
                             FastDivModForPooling divmods,
                             PoolProcess pool_process,
                             bool exclusive,
                             T* output_data,
                             bool channel_last = false) {
140 141
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
       index += blockDim.x * gridDim.x) {
L
limingshu 已提交
142 143
    int hstart, hend, wstart, wend;
    int w_offset, h_offset, c_offset, input_offset;
F
From00 已提交
144 145 146 147 148 149 150 151 152 153 154
    OffsetPreparationFor4Dimension<FastDivModForPooling>(index,
                                                         channel_last,
                                                         divmods,
                                                         0,
                                                         0,
                                                         input_width,
                                                         input_height,
                                                         &w_offset,
                                                         &h_offset,
                                                         &c_offset,
                                                         &input_offset);
L
limingshu 已提交
155
    input_data += input_offset;
156

157 158 159 160 161 162
    hstart = h_offset * stride_height - padding_height;
    hend = min(hstart + ksize_height, input_height);
    hstart = max(hstart, 0);
    wstart = w_offset * stride_width - padding_width;
    wend = min(wstart + ksize_width, input_width);
    wstart = max(wstart, 0);
163

164
    T ele = pool_process.initial();
165 166
    for (int h = hstart; h < hend; ++h) {
      for (int w = wstart; w < wend; ++w) {
L
limingshu 已提交
167 168 169
        auto input_idx = channel_last
                             ? (h * input_width + w) * channels + c_offset
                             : h * input_width + w;
170
        pool_process.compute(input_data[input_idx], &ele);
171 172
      }
    }
173 174
    int pool_size = exclusive ? (hend - hstart) * (wend - wstart)
                              : ksize_height * ksize_width;
C
chengduo 已提交
175
    pool_process.finalize(static_cast<T>(pool_size), &ele);
176 177 178
    output_data[index] = ele;
  }
}
L
limingshu 已提交
179

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
template <typename PoolProcess, typename T>
__global__ void AdaptiveKernelPool2D(const int nthreads,
                                     const T* input_data,
                                     const int channels,
                                     const int input_height,
                                     const int input_width,
                                     const int output_height,
                                     const int output_width,
                                     const int ksize_height,
                                     const int ksize_width,
                                     const int stride_height,
                                     const int stride_width,
                                     const int padding_height,
                                     const int padding_width,
                                     FastDivModForPooling divmods,
                                     PoolProcess pool_process,
                                     bool exclusive,
                                     T* output_data,
                                     bool channel_last = false) {
  const int n_offset = blockIdx.y;
  const int c_offset = blockIdx.x * blockDim.y + threadIdx.y;
  if (c_offset >= channels) {
    return;
  }
  int hstart, hend, wstart, wend;
  int input_offset =
      channel_last
          ? n_offset * input_height * input_width * channels
          : (n_offset * channels + c_offset) * input_height * input_width;
  int output_offset =
      channel_last
          ? n_offset * output_height * output_width * channels
          : (n_offset * channels + c_offset) * output_height * output_width;
  for (int hw_offset = threadIdx.x; hw_offset < output_height * output_width;
       hw_offset += blockDim.x) {
    int w_offset = hw_offset % output_width;
    int h_offset = hw_offset / output_width;
    hstart = AdaptStartIndex(h_offset, input_height, output_height);
    hend = AdaptEndIndex(h_offset, input_height, output_height);
    wstart = AdaptStartIndex(w_offset, input_width, output_width);
    wend = AdaptEndIndex(w_offset, input_width, output_width);

    T ele = pool_process.initial();
    for (int h = hstart; h < hend; ++h) {
      for (int w = wstart; w < wend; ++w) {
        auto input_idx = channel_last
                             ? (h * input_width + w) * channels + c_offset
                             : h * input_width + w;
        pool_process.compute(input_data[input_offset + input_idx], &ele);
      }
    }
    int pool_size = (hend - hstart) * (wend - wstart);
    pool_process.finalize(static_cast<T>(pool_size), &ele);
    int output_idx =
        channel_last
            ? (h_offset * output_width + w_offset) * channels + c_offset
            : h_offset * output_width + w_offset;
    output_data[output_offset + output_idx] = ele;
  }
}

L
limingshu 已提交
241
template <typename T, typename PoolProcess>
F
From00 已提交
242 243 244
__global__ void KernelPool2DGrad(const int nthreads,
                                 const T* __restrict__ input_data,
                                 const T* __restrict__ output_data,
245
                                 const T* __restrict__ output_grad,
F
From00 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
                                 const int output_width,
                                 const int output_height,
                                 const int input_width,
                                 const int input_height,
                                 const int ksize_width,
                                 const int ksize_height,
                                 const int stride_width,
                                 const int stride_height,
                                 const int padding_width,
                                 const int padding_height,
                                 FastDivModForPoolingWithMoreStaff divmods,
                                 PoolProcess pool_process,
                                 bool exclusive,
                                 bool adaptive,
                                 T* __restrict__ input_grad,
                                 bool channel_last = false) {
262 263
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
       index += blockDim.x * gridDim.x) {
L
limingshu 已提交
264 265 266 267
    T input = static_cast<T>(0);
    T input_grad_data = static_cast<T>(0);
    int phstart, phend, pwstart, pwend;
    int w_offset, h_offset, c_offset, output_offset;
F
From00 已提交
268 269 270 271 272 273 274 275 276 277 278
    OffsetPreparationFor4Dimension<>(index,
                                     channel_last,
                                     divmods,
                                     padding_width,
                                     padding_height,
                                     output_width,
                                     output_height,
                                     &w_offset,
                                     &h_offset,
                                     &c_offset,
                                     &output_offset);
L
limingshu 已提交
279 280 281
    if (pool_process.use_x) {
      input = input_data[index];
      output_data += output_offset;
282
    }
L
limingshu 已提交
283
    output_grad += output_offset;
284

285
    if (adaptive) {
L
limingshu 已提交
286 287 288 289 290 291
      auto tmp_phend = divmods.height.Divmod((h_offset + 1) * output_height);
      auto tmp_pwend = divmods.width.Divmod((w_offset + 1) * output_width);
      phstart = divmods.height.Div(h_offset * output_height);
      pwstart = divmods.width.Div(w_offset * output_width);
      phend = tmp_phend.val[1] > 0 ? tmp_phend.val[0] + 1 : tmp_phend.val[0];
      pwend = tmp_pwend.val[1] > 0 ? tmp_pwend.val[0] + 1 : tmp_pwend.val[0];
292

L
limingshu 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
      for (int ph = phstart; ph < phend; ++ph) {
        for (int pw = pwstart; pw < pwend; ++pw) {
          auto ksize_w_divmod = divmods.ksize_w.Divmod(input_width);
          auto ksize_h_divmod = divmods.ksize_h.Divmod(input_height);
          auto tmp_width = ksize_w_divmod.val[1] > 0 ? ksize_w_divmod.val[0] + 1
                                                     : ksize_w_divmod.val[0];
          auto tmp_height = ksize_h_divmod.val[1] > 0
                                ? ksize_h_divmod.val[0] + 1
                                : ksize_h_divmod.val[0];
          int pool_size = tmp_height * tmp_width;
          int tmp_idx = ph * output_width + pw;
          int output_sub_idx =
              channel_last ? tmp_idx * divmods.channel.divisor + c_offset
                           : tmp_idx;
          T ouput_value = pool_process.use_x ? output_data[output_sub_idx]
                                             : static_cast<T>(0);
F
From00 已提交
309 310 311
          pool_process.compute(input,
                               ouput_value,
                               output_grad[output_sub_idx],
L
limingshu 已提交
312 313 314 315
                               static_cast<T>(1.0 / pool_size),
                               &input_grad_data);
        }
      }
316
    } else {
L
limingshu 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
      auto stride_height_div = divmods.stride_h.Div(h_offset - ksize_height);
      auto stride_width_div = divmods.stride_w.Div(w_offset - ksize_width);
      phstart = (h_offset < ksize_height) ? 0 : stride_height_div + 1;
      pwstart = (w_offset < ksize_width) ? 0 : stride_width_div + 1;
      phend = min(divmods.stride_h.Div(h_offset) + 1, output_height);
      pwend = min(divmods.stride_w.Div(w_offset) + 1, output_width);

      if (exclusive) {
        for (int ph = phstart; ph < phend; ++ph) {
          for (int pw = pwstart; pw < pwend; ++pw) {
            int hstart = ph * stride_height - padding_height;
            int wstart = pw * stride_width - padding_width;
            int hend = min(hstart + ksize_height, input_height);
            int wend = min(wstart + ksize_width, input_width);
            hstart = max(hstart, 0);
            wstart = max(wstart, 0);
            int pool_size = (hend - hstart) * (wend - wstart);
            int tmp_idx = ph * output_width + pw;
            int output_sub_idx =
                channel_last ? tmp_idx * divmods.channel.divisor + c_offset
                             : tmp_idx;
            T ouput_value = pool_process.use_x ? output_data[output_sub_idx]
                                               : static_cast<T>(0);
F
From00 已提交
340 341 342 343 344
            pool_process.compute(input,
                                 ouput_value,
                                 output_grad[output_sub_idx],
                                 static_cast<T>(1.0 / pool_size),
                                 &input_grad_data);
L
limingshu 已提交
345 346 347 348 349 350 351 352 353 354 355 356
          }
        }
      } else {
        for (int ph = phstart; ph < phend; ++ph) {
          for (int pw = pwstart; pw < pwend; ++pw) {
            int pool_size = ksize_height * ksize_width;
            int tmp_idx = ph * output_width + pw;
            int output_sub_idx =
                channel_last ? tmp_idx * divmods.channel.divisor + c_offset
                             : tmp_idx;
            T ouput_value = pool_process.use_x ? output_data[output_sub_idx]
                                               : static_cast<T>(0);
F
From00 已提交
357 358 359 360 361
            pool_process.compute(input,
                                 ouput_value,
                                 output_grad[output_sub_idx],
                                 static_cast<T>(1.0 / pool_size),
                                 &input_grad_data);
L
limingshu 已提交
362
          }
363
        }
364 365
      }
    }
L
limingshu 已提交
366
    input_grad[index] = input_grad_data;
367 368 369
  }
}

370
template <typename T>
F
From00 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
__global__ void KernelMaxPool2DGrad(const int nthreads,
                                    const T* input_data,
                                    const T* output_data,
                                    const T* output_grad,
                                    const int channels,
                                    const int input_height,
                                    const int input_width,
                                    const int output_height,
                                    const int output_width,
                                    const int ksize_height,
                                    const int ksize_width,
                                    const int stride_height,
                                    const int stride_width,
                                    const int padding_height,
                                    const int padding_width,
                                    T* input_grad,
                                    FastDivModForPooling divmods,
                                    bool channel_last = false) {
389 390
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
       index += blockDim.x * gridDim.x) {
L
limingshu 已提交
391
    int w_offset, h_offset, c_offset, input_offset;
F
From00 已提交
392 393 394 395 396 397 398 399 400 401 402
    OffsetPreparationFor4Dimension<FastDivModForPooling>(index,
                                                         channel_last,
                                                         divmods,
                                                         0,
                                                         0,
                                                         input_width,
                                                         input_height,
                                                         &w_offset,
                                                         &h_offset,
                                                         &c_offset,
                                                         &input_offset);
L
limingshu 已提交
403 404 405 406
    input_data += input_offset;
    input_grad += input_offset;

    int hstart = h_offset * stride_height - padding_height;
407 408 409
    int hend = min(hstart + ksize_height, input_height);
    hstart = max(hstart, 0);

L
limingshu 已提交
410
    int wstart = w_offset * stride_width - padding_width;
411 412 413 414 415 416 417 418
    int wend = min(wstart + ksize_width, input_width);
    wstart = max(wstart, 0);

    T ele = output_data[index];
    int maxIndex = -1;
    bool stop = false;
    for (int h = hstart; h < hend && !stop; ++h) {
      for (int w = wstart; w < wend && !stop; ++w) {
L
limingshu 已提交
419 420 421
        int input_data_idx = channel_last
                                 ? (h * input_width + w) * channels + c_offset
                                 : h * input_width + w;
422 423
        if (ele == input_data[input_data_idx]) {
          maxIndex = input_data_idx;
424 425 426 427 428 429 430
          stop = true;
        }
      }
    }

    if (maxIndex != -1) {
      // atomic add
F
From00 已提交
431 432
      paddle::platform::CudaAtomicAdd(input_grad + maxIndex,
                                      output_grad[index]);
433 434 435 436
    }
  }
}

N
nhzlx 已提交
437 438
template <typename PoolProcess, typename T>
void Pool2dDirectCUDAFunctor<PoolProcess, T>::operator()(
F
From00 已提交
439 440 441 442 443 444 445 446 447 448
    const T* input,
    const std::vector<int>& input_shape,
    const std::vector<int>& output_shape,
    const std::vector<int>& ksize,
    const std::vector<int>& strides,
    const std::vector<int>& paddings,
    bool exclusive,
    bool adaptive,
    T* output,
    gpuStream_t stream,
449
    PoolProcess pool_compute) {
N
nhzlx 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
  const int batch_size = input_shape[0];
  const int input_channels = input_shape[1];
  const int input_height = input_shape[2];
  const int input_width = input_shape[3];
  const int output_channels = output_shape[1];
  const int output_height = output_shape[2];
  const int output_width = output_shape[3];
  const int ksize_height = ksize[0];
  const int ksize_width = ksize[1];
  const int stride_height = strides[0];
  const int stride_width = strides[1];
  const int padding_height = paddings[0];
  const int padding_width = paddings[1];

  int nthreads = batch_size * output_channels * output_height * output_width;
L
limingshu 已提交
465 466
  auto pool_divmods =
      FastDivModForPooling(input_channels, output_width, output_height);
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
  if (adaptive) {
    int max_threads = 512;
    int thread_num =
        std::min(phi::funcs::details::GetLastPow2(output_height * output_width),
                 max_threads);
    int blocks = std::min(max_threads / thread_num, output_channels);
    dim3 threads(thread_num, blocks, 1);
    dim3 grid(
        std::max((output_channels + blocks - 1) / blocks, 1), batch_size, 1);
    AdaptiveKernelPool2D<PoolProcess, T>
        <<<grid, threads, 0, stream>>>(nthreads,
                                       input,
                                       input_channels,
                                       input_height,
                                       input_width,
                                       output_height,
                                       output_width,
                                       ksize_height,
                                       ksize_width,
                                       stride_height,
                                       stride_width,
                                       padding_height,
                                       padding_width,
                                       pool_divmods,
                                       pool_compute,
                                       exclusive,
                                       output);
  } else {
    int thread_num = 1024;
#ifdef WITH_NV_JETSON
    // backends::gpu::ChangeThreadNum(context, &thread_num);
    thread_num = 512;
#endif
    int blocks = (nthreads + thread_num - 1) / thread_num;
    dim3 threads(thread_num, 1);
    dim3 grid(blocks, 1);
    KernelPool2D<PoolProcess, T><<<grid, threads, 0, stream>>>(nthreads,
                                                               input,
                                                               input_channels,
                                                               input_height,
                                                               input_width,
                                                               output_height,
                                                               output_width,
                                                               ksize_height,
                                                               ksize_width,
                                                               stride_height,
                                                               stride_width,
                                                               padding_height,
                                                               padding_width,
                                                               pool_divmods,
                                                               pool_compute,
                                                               exclusive,
                                                               output);
  }
N
nhzlx 已提交
521 522
}

C
chengduoZH 已提交
523
/*
524 525 526 527 528 529
 * Tensors are in NCHW or NHWC format.
 * Ksize, strides are two elements. These two elements represent height
 * and width, respectively.
 * Paddings are four elements. These four elements represent height_up,
 * height_down, width_left and width_right, respectively.
 */
530
template <typename PoolProcess, typename T>
F
From00 已提交
531
class Pool2dFunctor<phi::GPUContext, PoolProcess, T> {
532
 public:
F
From00 已提交
533 534 535
  void operator()(const phi::GPUContext& context,
                  const DenseTensor& input,
                  const std::vector<int>& ksize,
C
chengduo 已提交
536
                  const std::vector<int>& strides,
F
From00 已提交
537 538 539 540
                  const std::vector<int>& paddings,
                  bool exclusive,
                  bool adaptive,
                  DenseTensor* output,
541
                  PoolProcess pool_process) {
542 543 544 545
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
C
chengduoZH 已提交
546 547 548
    const int output_channels = output->dims()[1];
    const int output_height = output->dims()[2];
    const int output_width = output->dims()[3];
549 550 551 552 553 554 555 556
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const T* input_data = input.data<T>();
F
From00 已提交
557
    T* output_data = context.template Alloc<T>(output);
558 559

    int nthreads = batch_size * output_channels * output_height * output_width;
L
limingshu 已提交
560 561
    auto pool_divmods =
        FastDivModForPooling(input_channels, output_width, output_height);
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
    if (adaptive) {
      int max_threads = 512;
      int thread_num = std::min(
          phi::funcs::details::GetLastPow2(output_height * output_width),
          max_threads);
      int blocks = std::min(max_threads / thread_num, output_channels);
      dim3 threads(thread_num, blocks, 1);
      dim3 grid(
          std::max((output_channels + blocks - 1) / blocks, 1), batch_size, 1);
      AdaptiveKernelPool2D<PoolProcess, T>
          <<<grid, threads, 0, context.stream()>>>(nthreads,
                                                   input_data,
                                                   input_channels,
                                                   input_height,
                                                   input_width,
                                                   output_height,
                                                   output_width,
                                                   ksize_height,
                                                   ksize_width,
                                                   stride_height,
                                                   stride_width,
                                                   padding_height,
                                                   padding_width,
                                                   pool_divmods,
                                                   pool_process,
                                                   exclusive,
                                                   output_data);
    } else {
      int thread_num = 1024;
#ifdef WITH_NV_JETSON
      backends::gpu::ChangeThreadNum(context, &thread_num);
#endif
      int blocks = (nthreads + thread_num - 1) / thread_num;
      dim3 threads(thread_num, 1);
      dim3 grid(blocks, 1);
      KernelPool2D<PoolProcess, T>
          <<<grid, threads, 0, context.stream()>>>(nthreads,
                                                   input_data,
                                                   input_channels,
                                                   input_height,
                                                   input_width,
                                                   output_height,
                                                   output_width,
                                                   ksize_height,
                                                   ksize_width,
                                                   stride_height,
                                                   stride_width,
                                                   padding_height,
                                                   padding_width,
                                                   pool_divmods,
                                                   pool_process,
                                                   exclusive,
                                                   output_data);
    }
616
  }
F
From00 已提交
617 618 619
  void operator()(const phi::GPUContext& context,
                  const DenseTensor& input,
                  const std::vector<int>& ksize,
620 621
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
F
From00 已提交
622 623 624 625 626
                  const std::string data_format,
                  bool exclusive,
                  bool adaptive,
                  DenseTensor* output,
                  PoolProcess pool_process) {
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
    bool channel_last = (data_format == "NHWC");
    const int batch_size = input.dims()[0];

    const int input_channels = channel_last ? input.dims()[3] : input.dims()[1];
    const int input_height = channel_last ? input.dims()[1] : input.dims()[2];
    const int input_width = channel_last ? input.dims()[2] : input.dims()[3];

    const int output_channels =
        channel_last ? output->dims()[3] : output->dims()[1];
    const int output_height =
        channel_last ? output->dims()[1] : output->dims()[2];
    const int output_width =
        channel_last ? output->dims()[2] : output->dims()[3];

    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];

    const int stride_height = strides[0];
    const int stride_width = strides[1];
646

647 648 649 650
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const T* input_data = input.data<T>();
F
From00 已提交
651
    T* output_data = context.template Alloc<T>(output);
652 653

    int nthreads = batch_size * output_channels * output_height * output_width;
L
limingshu 已提交
654 655
    auto pool_divmods =
        FastDivModForPooling(input_channels, output_width, output_height);
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
    if (adaptive) {
      int max_threads = 512;
      int thread_num = std::min(
          phi::funcs::details::GetLastPow2(output_height * output_width),
          max_threads);
      int blocks = std::min(max_threads / thread_num, output_channels);
      dim3 threads(thread_num, blocks, 1);
      dim3 grid(
          std::max((output_channels + blocks - 1) / blocks, 1), batch_size, 1);
      AdaptiveKernelPool2D<PoolProcess, T>
          <<<grid, threads, 0, context.stream()>>>(nthreads,
                                                   input_data,
                                                   input_channels,
                                                   input_height,
                                                   input_width,
                                                   output_height,
                                                   output_width,
                                                   ksize_height,
                                                   ksize_width,
                                                   stride_height,
                                                   stride_width,
                                                   padding_height,
                                                   padding_width,
                                                   pool_divmods,
                                                   pool_process,
                                                   exclusive,
                                                   output_data,
                                                   channel_last);
    } else {
      int thread_num = 1024;
#ifdef WITH_NV_JETSON
      backends::gpu::ChangeThreadNum(context, &thread_num);
#endif
      int blocks = (nthreads + thread_num - 1) / thread_num;
      dim3 threads(thread_num, 1);
      dim3 grid(blocks, 1);
      KernelPool2D<PoolProcess, T>
          <<<grid, threads, 0, context.stream()>>>(nthreads,
                                                   input_data,
                                                   input_channels,
                                                   input_height,
                                                   input_width,
                                                   output_height,
                                                   output_width,
                                                   ksize_height,
                                                   ksize_width,
                                                   stride_height,
                                                   stride_width,
                                                   padding_height,
                                                   padding_width,
                                                   pool_divmods,
                                                   pool_process,
                                                   exclusive,
                                                   output_data,
                                                   channel_last);
    }
712 713
  }
};
C
chengduoZH 已提交
714
/*
715 716 717 718 719 720
 * Tensors are in NCHW or NHWC format.
 * Ksize, strides are two elements. These two elements represent height
 * and width, respectively.
 * Paddings are four elements. These four elements represent height_up,
 * height_down, width_left and width_right, respectively.
 */
721
template <typename PoolProcess, typename T>
F
From00 已提交
722
class Pool2dGradFunctor<phi::GPUContext, PoolProcess, T> {
723
 public:
F
From00 已提交
724 725 726 727
  void operator()(const phi::GPUContext& context,
                  const DenseTensor& input,
                  const DenseTensor& output,
                  const DenseTensor& output_grad,
C
chengduo 已提交
728 729
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
F
From00 已提交
730 731 732 733
                  const std::vector<int>& paddings,
                  bool exclusive,
                  bool adaptive,
                  DenseTensor* input_grad,
734
                  PoolProcess pool_process) {
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
F
From00 已提交
751
    T* input_grad_data = context.template Alloc<T>(input_grad);
752 753

    int nthreads = batch_size * input_channels * input_height * input_width;
F
From00 已提交
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
    auto pool_divmods = FastDivModForPoolingWithMoreStaff(input_channels,
                                                          input_width,
                                                          input_height,
                                                          ksize_width,
                                                          ksize_height,
                                                          stride_width,
                                                          stride_height);

    auto config = phi::backends::gpu::GetGpuLaunchConfig1D(context, nthreads);
    KernelPool2DGrad<T, PoolProcess><<<config.block_per_grid,
                                       config.thread_per_block,
                                       0,
                                       context.stream()>>>(nthreads,
                                                           input_data,
                                                           output_data,
                                                           output_grad_data,
                                                           output_width,
                                                           output_height,
                                                           input_width,
                                                           input_height,
                                                           ksize_width,
                                                           ksize_height,
                                                           stride_width,
                                                           stride_height,
                                                           padding_width,
                                                           padding_height,
                                                           pool_divmods,
                                                           pool_process,
                                                           exclusive,
                                                           adaptive,
                                                           input_grad_data);
785
  }
F
From00 已提交
786 787 788 789
  void operator()(const phi::GPUContext& context,
                  const DenseTensor& input,
                  const DenseTensor& output,
                  const DenseTensor& output_grad,
790 791 792
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
F
From00 已提交
793 794 795 796 797
                  const std::string data_format,
                  bool exclusive,
                  bool adaptive,
                  DenseTensor* input_grad,
                  PoolProcess pool_process) {
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
    bool channel_last = (data_format == "NHWC");

    const int batch_size = input.dims()[0];
    const int input_channels = channel_last ? input.dims()[3] : input.dims()[1];
    const int input_height = channel_last ? input.dims()[1] : input.dims()[2];
    const int input_width = channel_last ? input.dims()[2] : input.dims()[3];

    const int output_channels =
        channel_last ? output.dims()[3] : output.dims()[1];
    const int output_height =
        channel_last ? output.dims()[1] : output.dims()[2];
    const int output_width = channel_last ? output.dims()[2] : output.dims()[3];

    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];

    const int stride_height = strides[0];
    const int stride_width = strides[1];

    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
F
From00 已提交
823
    T* input_grad_data = context.template Alloc<T>(input_grad);
824 825

    int nthreads = batch_size * input_channels * input_height * input_width;
F
From00 已提交
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
    auto pool_divmods = FastDivModForPoolingWithMoreStaff(input_channels,
                                                          input_width,
                                                          input_height,
                                                          ksize_width,
                                                          ksize_height,
                                                          stride_width,
                                                          stride_height);

    auto config = phi::backends::gpu::GetGpuLaunchConfig1D(context, nthreads);
    KernelPool2DGrad<T, PoolProcess><<<config.block_per_grid,
                                       config.thread_per_block,
                                       0,
                                       context.stream()>>>(nthreads,
                                                           input_data,
                                                           output_data,
                                                           output_grad_data,
                                                           output_width,
                                                           output_height,
                                                           input_width,
                                                           input_height,
                                                           ksize_width,
                                                           ksize_height,
                                                           stride_width,
                                                           stride_height,
                                                           padding_width,
                                                           padding_height,
                                                           pool_divmods,
                                                           pool_process,
                                                           exclusive,
                                                           adaptive,
                                                           input_grad_data,
                                                           channel_last);
858
  }
859 860
};

C
chengduoZH 已提交
861
/*
862 863 864 865 866 867
 * Tensors are in NCHW or NHWC format.
 * Ksize, strides are two elements. These two elements represent height
 * and width, respectively.
 * Paddings are four elements. These four elements represent height_up,
 * height_down, width_left and width_right, respectively.
 */
868
template <typename T>
F
From00 已提交
869
class MaxPool2dGradFunctor<phi::GPUContext, T> {
870
 public:
F
From00 已提交
871 872 873 874
  void operator()(const phi::GPUContext& context,
                  const DenseTensor& input,
                  const DenseTensor& output,
                  const DenseTensor& output_grad,
C
chengduo 已提交
875 876 877
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
F
From00 已提交
878
                  DenseTensor* input_grad) {
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
F
From00 已提交
896
    T* input_grad_data = context.template Alloc<T>(input_grad);
897 898 899 900 901 902

    int nthreads = batch_size * output_channels * output_height * output_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

L
limingshu 已提交
903 904
    auto pool_divmods =
        FastDivModForPooling(input_channels, output_width, output_height);
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
    KernelMaxPool2DGrad<T>
        <<<grid, threads, 0, context.stream()>>>(nthreads,
                                                 input_data,
                                                 output_data,
                                                 output_grad_data,
                                                 input_channels,
                                                 input_height,
                                                 input_width,
                                                 output_height,
                                                 output_width,
                                                 ksize_height,
                                                 ksize_width,
                                                 stride_height,
                                                 stride_width,
                                                 padding_height,
                                                 padding_width,
                                                 input_grad_data,
                                                 pool_divmods);
923
  }
F
From00 已提交
924 925 926 927 928 929 930 931 932
  void operator()(const phi::GPUContext& context,
                  const DenseTensor& input,
                  const DenseTensor& output,
                  const DenseTensor& output_grad,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  const std::string data_format,
                  DenseTensor* input_grad) {
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
    bool channel_last = (data_format == "NHWC");

    const int batch_size = input.dims()[0];

    const int input_channels = channel_last ? input.dims()[3] : input.dims()[1];
    const int input_height = channel_last ? input.dims()[1] : input.dims()[2];
    const int input_width = channel_last ? input.dims()[2] : input.dims()[3];

    const int output_channels =
        channel_last ? output.dims()[3] : output.dims()[1];
    const int output_height =
        channel_last ? output.dims()[1] : output.dims()[2];
    const int output_width = channel_last ? output.dims()[2] : output.dims()[3];

    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];

    const int stride_height = strides[0];
    const int stride_width = strides[1];

    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
F
From00 已提交
959
    T* input_grad_data = context.template Alloc<T>(input_grad);
960 961 962 963 964 965

    int nthreads = batch_size * output_channels * output_height * output_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

L
limingshu 已提交
966 967 968
    auto pool_divmods =
        FastDivModForPooling(input_channels, output_width, output_height);

969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
    KernelMaxPool2DGrad<T>
        <<<grid, threads, 0, context.stream()>>>(nthreads,
                                                 input_data,
                                                 output_data,
                                                 output_grad_data,
                                                 input_channels,
                                                 input_height,
                                                 input_width,
                                                 output_height,
                                                 output_width,
                                                 ksize_height,
                                                 ksize_width,
                                                 stride_height,
                                                 stride_width,
                                                 padding_height,
                                                 padding_width,
                                                 input_grad_data,
                                                 pool_divmods,
                                                 channel_last);
988
  }
989 990
};

F
From00 已提交
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
template class Pool2dDirectCUDAFunctor<MaxPool<float>, float>;
template class Pool2dDirectCUDAFunctor<AvgPool<float>, float>;

template class MaxPool2dGradFunctor<phi::GPUContext, float>;
template class MaxPool2dGradFunctor<phi::GPUContext, double>;
template class MaxPool2dGradFunctor<phi::GPUContext, dtype::float16>;

template class Pool2dFunctor<phi::GPUContext, MaxPool<float>, float>;
template class Pool2dFunctor<phi::GPUContext, AvgPool<float>, float>;
template class Pool2dGradFunctor<phi::GPUContext, MaxPoolGrad<float>, float>;
template class Pool2dGradFunctor<phi::GPUContext, AvgPoolGrad<float>, float>;
template class Pool2dFunctor<phi::GPUContext, MaxPool<double>, double>;
template class Pool2dFunctor<phi::GPUContext, AvgPool<double>, double>;
template class Pool2dGradFunctor<phi::GPUContext, MaxPoolGrad<double>, double>;
template class Pool2dGradFunctor<phi::GPUContext, AvgPoolGrad<double>, double>;

template class Pool2dFunctor<phi::GPUContext,
                             MaxPool<dtype::float16>,
                             dtype::float16>;
template class Pool2dFunctor<phi::GPUContext,
                             AvgPool<dtype::float16>,
                             dtype::float16>;
template class Pool2dGradFunctor<phi::GPUContext,
                                 MaxPoolGrad<dtype::float16>,
                                 dtype::float16>;
template class Pool2dGradFunctor<phi::GPUContext,
                                 AvgPoolGrad<dtype::float16>,
                                 dtype::float16>;
1019

1020
template <typename PoolProcess, typename T>
F
From00 已提交
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
__global__ void KernelPool3D(const int nthreads,
                             const T* input_data,
                             const int channels,
                             const int input_depth,
                             const int input_height,
                             const int input_width,
                             const int output_depth,
                             const int output_height,
                             const int output_width,
                             const int ksize_depth,
                             const int ksize_height,
                             const int ksize_width,
                             const int stride_depth,
                             const int stride_height,
                             const int stride_width,
                             const int padding_depth,
                             const int padding_height,
                             const int padding_width,
                             PoolProcess pool_process,
                             bool exclusive,
                             bool adaptive,
                             T* output_data,
                             bool channel_last = false) {
1044
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
1045
       index += blockDim.x * gridDim.x) {
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
    int pw, ph, pd, c, batch_idx;
    if (!channel_last) {
      pw = index % output_width;
      ph = (index / output_width) % output_height;
      pd = (index / output_width / output_height) % output_depth;
      c = (index / output_width / output_height / output_depth) % channels;
      batch_idx =
          index / output_width / output_height / output_depth / channels;
    } else {
      c = index % channels;
      pw = (index / channels) % output_width;
      ph = (index / channels / output_width) % output_height;
      pd = (index / channels / output_width / output_height) % output_depth;
      batch_idx =
          index / channels / output_width / output_height / output_depth;
    }
1062 1063 1064 1065 1066

    int dstart, dend;
    int hstart, hend;
    int wstart, wend;
    if (adaptive) {
D
dengkaipeng 已提交
1067 1068
      dstart = AdaptStartIndex(pd, input_depth, output_depth);
      dend = AdaptEndIndex(pd, input_depth, output_depth);
1069

D
dengkaipeng 已提交
1070 1071
      hstart = AdaptStartIndex(ph, input_height, output_height);
      hend = AdaptEndIndex(ph, input_height, output_height);
1072

D
dengkaipeng 已提交
1073 1074
      wstart = AdaptStartIndex(pw, input_width, output_width);
      wend = AdaptEndIndex(pw, input_width, output_width);
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
    } else {
      dstart = pd * stride_depth - padding_depth;
      hstart = ph * stride_height - padding_height;
      wstart = pw * stride_width - padding_width;
      dend = min(dstart + ksize_depth, input_depth);
      hend = min(hstart + ksize_height, input_height);
      wend = min(wstart + ksize_width, input_width);
      dstart = max(dstart, 0);
      hstart = max(hstart, 0);
      wstart = max(wstart, 0);
    }
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096

    int input_data_stride;
    if (!channel_last) { /* NCDHW */
      input_data_stride =
          (batch_idx * channels + c) * input_depth * input_height * input_width;
    } else { /* NDHWC */
      input_data_stride =
          batch_idx * input_depth * input_height * input_width * channels;
    }
    input_data += input_data_stride;

1097
    T ele = pool_process.initial();
1098 1099 1100
    for (int d = dstart; d < dend; ++d) {
      for (int h = hstart; h < hend; ++h) {
        for (int w = wstart; w < wend; ++w) {
1101 1102 1103 1104 1105
          auto input_data_idx =
              channel_last
                  ? ((d * input_height + h) * input_width + w) * channels + c
                  : (d * input_height + h) * input_width + w;
          pool_process.compute(input_data[input_data_idx], &ele);
1106 1107 1108
        }
      }
    }
1109
    int pool_size = (exclusive || adaptive)
1110 1111
                        ? (dend - dstart) * (hend - hstart) * (wend - wstart)
                        : ksize_depth * ksize_height * ksize_width;
C
chengduo 已提交
1112
    pool_process.finalize(static_cast<T>(pool_size), &ele);
1113 1114 1115 1116
    output_data[index] = ele;
  }
}

L
limingshu 已提交
1117
template <typename T, typename PoolProcess>
F
From00 已提交
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
__global__ void KernelPool3DGrad(const int nthreads,
                                 const T* __restrict__ input_data,
                                 const T* __restrict__ output_data,
                                 const T* __restrict__ output_grad,
                                 const int channels,
                                 const int input_depth,
                                 const int input_height,
                                 const int input_width,
                                 const int output_depth,
                                 const int output_height,
                                 const int output_width,
                                 const int ksize_depth,
                                 const int ksize_height,
                                 const int ksize_width,
                                 const int stride_depth,
                                 const int stride_height,
                                 const int stride_width,
                                 const int padding_depth,
                                 const int padding_height,
                                 const int padding_width,
                                 PoolProcess pool_process,
                                 bool exclusive,
                                 bool adaptive,
                                 T* input_grad,
                                 bool channel_last = false) {
1143
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
1144
       index += blockDim.x * gridDim.x) {
L
limingshu 已提交
1145 1146
    int w_offset, h_offset, d_offset, c_offset, batch_idx, output_stride;
    T input = static_cast<T>(0);
1147 1148 1149 1150 1151
    if (!channel_last) { /* "NCDHW" */
      w_offset = index % input_width + padding_width;
      h_offset = (index / input_width) % input_height + padding_height;
      d_offset =
          (index / input_width / input_height) % input_depth + padding_depth;
L
limingshu 已提交
1152
      c_offset = (index / input_width / input_height / input_depth) % channels;
1153
      batch_idx = index / input_width / input_height / input_depth / channels;
L
limingshu 已提交
1154 1155
      output_stride = (batch_idx * channels + c_offset) * output_depth *
                      output_height * output_width;
1156
    } else { /* "NDHWC" */
L
limingshu 已提交
1157
      c_offset = index % channels;
1158 1159 1160 1161 1162 1163
      w_offset = (index / channels) % input_width + padding_width;
      h_offset =
          (index / channels / input_width) % input_height + padding_height;
      d_offset = (index / channels / input_width / input_height) % input_depth +
                 padding_depth;
      batch_idx = index / channels / input_width / input_height / input_depth;
L
limingshu 已提交
1164 1165
      output_stride =
          batch_idx * output_depth * output_height * output_width * channels;
1166
    }
1167

1168 1169 1170 1171
    int pdstart, pdend;
    int phstart, phend;
    int pwstart, pwend;
    if (adaptive) {
1172 1173 1174 1175 1176 1177 1178 1179
      pdstart = AdaptStartIndex(d_offset, output_depth, input_depth);
      pdend = AdaptEndIndex(d_offset, output_depth, input_depth);

      phstart = AdaptStartIndex(h_offset, output_height, input_height);
      phend = AdaptEndIndex(h_offset, output_height, input_height);

      pwstart = AdaptStartIndex(w_offset, output_width, input_width);
      pwend = AdaptEndIndex(w_offset, output_width, input_width);
1180
    } else {
D
dengkaipeng 已提交
1181
      pdstart = (d_offset < ksize_depth)
1182
                    ? 0
D
dengkaipeng 已提交
1183 1184
                    : (d_offset - ksize_depth) / stride_depth + 1;
      phstart = (h_offset < ksize_height)
1185
                    ? 0
D
dengkaipeng 已提交
1186 1187
                    : (h_offset - ksize_height) / stride_height + 1;
      pwstart = (w_offset < ksize_width)
1188
                    ? 0
D
dengkaipeng 已提交
1189 1190 1191 1192
                    : (w_offset - ksize_width) / stride_width + 1;
      pdend = min((d_offset) / stride_depth + 1, output_depth);
      phend = min((h_offset) / stride_height + 1, output_height);
      pwend = min((w_offset) / stride_width + 1, output_width);
1193
    }
L
limingshu 已提交
1194 1195 1196
    if (pool_process.use_x) {
      input = input_data[index];
      output_data += output_stride;
1197 1198
    }
    output_grad += output_stride;
L
limingshu 已提交
1199
    T input_grad_data = static_cast<T>(0.0);
1200 1201 1202 1203 1204

    for (int pd = pdstart; pd < pdend; ++pd) {
      for (int ph = phstart; ph < phend; ++ph) {
        for (int pw = pwstart; pw < pwend; ++pw) {
          // figure out the pooling size
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
          int pool_size;
          if (adaptive) {
            pool_size =
                static_cast<int>(
                    ceil(static_cast<double>(input_depth) / ksize_depth)) *
                static_cast<int>(
                    ceil(static_cast<double>(input_height) / ksize_height)) *
                static_cast<int>(
                    ceil(static_cast<double>(input_width) / ksize_width));
          } else {
            int dstart = pd * stride_depth - padding_depth;
            int hstart = ph * stride_height - padding_height;
            int wstart = pw * stride_width - padding_width;
            int dend = min(dstart + ksize_depth, input_depth);
            int hend = min(hstart + ksize_height, input_height);
            int wend = min(wstart + ksize_width, input_width);
            dstart = max(dstart, 0);
            hstart = max(hstart, 0);
            wstart = max(wstart, 0);
            pool_size =
                exclusive ? (dend - dstart) * (hend - hstart) * (wend - wstart)
                          : ksize_depth * ksize_height * ksize_width;
          }
1228 1229 1230 1231

          int output_sub_idx =
              channel_last
                  ? ((pd * output_height + ph) * output_width + pw) * channels +
L
limingshu 已提交
1232
                        c_offset
1233
                  : (pd * output_height + ph) * output_width + pw;
L
limingshu 已提交
1234 1235
          T ouput_value = pool_process.use_x ? output_data[output_sub_idx]
                                             : static_cast<T>(0);
F
From00 已提交
1236 1237 1238
          pool_process.compute(input,
                               ouput_value,
                               output_grad[output_sub_idx],
L
limingshu 已提交
1239 1240
                               static_cast<T>(1.0 / pool_size),
                               &input_grad_data);
1241 1242 1243
        }
      }
    }
L
limingshu 已提交
1244
    input_grad[index] = input_grad_data;
1245 1246 1247
  }
}

1248
template <typename T>
F
From00 已提交
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
__global__ void KernelMaxPool3DGrad(const int nthreads,
                                    const T* input_data,
                                    const T* output_data,
                                    const T* output_grad,
                                    const int channels,
                                    const int input_depth,
                                    const int input_height,
                                    const int input_width,
                                    const int output_depth,
                                    const int output_height,
                                    const int output_width,
                                    const int ksize_depth,
                                    const int ksize_height,
                                    const int ksize_width,
                                    const int stride_depth,
                                    const int stride_height,
                                    const int stride_width,
                                    const int padding_depth,
                                    const int padding_height,
                                    const int padding_width,
                                    T* input_grad,
                                    bool channel_last = false) {
1271
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
1272
       index += blockDim.x * gridDim.x) {
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
    int pw, ph, pd, c, batch_idx;

    if (!channel_last) { /*NCDHW*/
      pw = index % output_width;
      ph = (index / output_width) % output_height;
      pd = (index / output_width / output_height) % output_depth;
      c = (index / output_width / output_height / output_depth) % channels;
      batch_idx =
          index / output_width / output_height / output_depth / channels;
    } else { /*NDHWC*/
      c = index % channels;
      pw = (index / channels) % output_width;
      ph = (index / channels / output_width) % output_height;
      pd = (index / channels / output_width / output_height) % output_depth;
      batch_idx =
          index / channels / output_width / output_height / output_depth;
    }

1291 1292 1293
    int dstart = pd * stride_depth - padding_depth;
    int hstart = ph * stride_height - padding_height;
    int wstart = pw * stride_width - padding_width;
1294

1295 1296 1297
    int dend = min(dstart + ksize_depth, input_depth);
    int hend = min(hstart + ksize_height, input_height);
    int wend = min(wstart + ksize_width, input_width);
1298

1299 1300 1301
    dstart = max(dstart, 0);
    hstart = max(hstart, 0);
    wstart = max(wstart, 0);
1302

1303 1304 1305 1306
    T ele = output_data[index];
    bool stop = false;
    int maxIdx = -1;

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
    int input_stride;
    if (!channel_last) {
      input_stride =
          (batch_idx * channels + c) * input_depth * input_height * input_width;
    } else {
      input_stride =
          batch_idx * input_depth * input_height * input_width * channels;
    }
    input_data += input_stride;
    input_grad += input_stride;
1317 1318 1319
    for (int d = dstart; d < dend && !stop; ++d) {
      for (int h = hstart; h < hend && !stop; ++h) {
        for (int w = wstart; w < wend && !stop; ++w) {
1320 1321 1322 1323 1324
          int input_data_idx =
              channel_last
                  ? ((d * input_height + h) * input_width + w) * channels + c
                  : (d * input_height + h) * input_width + w;
          if (ele == input_data[input_data_idx]) {
1325
            stop = true;
1326
            maxIdx = input_data_idx;
1327 1328 1329 1330 1331 1332
          }
        }
      }
    }
    if (maxIdx != -1) {
      // atomic add
F
From00 已提交
1333
      paddle::platform::CudaAtomicAdd(input_grad + maxIdx, output_grad[index]);
1334 1335 1336 1337
    }
  }
}

F
feng_shuai 已提交
1338 1339
template <typename PoolProcess, typename T>
void Pool3dDirectCUDAFunctor<PoolProcess, T>::operator()(
F
From00 已提交
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
    const T* input,
    const std::vector<int>& input_shape,
    const std::vector<int>& output_shape,
    const std::vector<int>& ksize,
    const std::vector<int>& strides,
    const std::vector<int>& paddings,
    bool exclusive,
    bool adaptive,
    T* output,
    gpuStream_t stream,
F
feng_shuai 已提交
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
    PoolProcess pool_compute) {
  const int batch_size = input_shape[0];
  const int input_channels = input_shape[1];
  const int input_depth = input_shape[2];
  const int input_height = input_shape[3];
  const int input_width = input_shape[4];
  const int output_channels = output_shape[1];
  const int output_depth = output_shape[2];
  const int output_height = output_shape[3];
  const int output_width = output_shape[4];
  const int ksize_depth = ksize[0];
  const int ksize_height = ksize[1];
  const int ksize_width = ksize[2];
  const int stride_depth = strides[0];
  const int stride_height = strides[1];
  const int stride_width = strides[2];
  const int padding_depth = paddings[0];
  const int padding_height = paddings[1];
  const int padding_width = paddings[2];

  int nthreads = batch_size * output_channels * output_depth * output_height *
                 output_width;
  int thread_num = 1024;
#ifdef WITH_NV_JETSON
  thread_num = 512;
#endif
  int blocks = (nthreads + thread_num - 1) / thread_num;
  dim3 threads(thread_num, 1);
  dim3 grid(blocks, 1);

F
From00 已提交
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
  KernelPool3D<PoolProcess, T><<<grid, threads, 0, stream>>>(nthreads,
                                                             input,
                                                             input_channels,
                                                             input_depth,
                                                             input_height,
                                                             input_width,
                                                             output_depth,
                                                             output_height,
                                                             output_width,
                                                             ksize_depth,
                                                             ksize_height,
                                                             ksize_width,
                                                             stride_depth,
                                                             stride_height,
                                                             stride_width,
                                                             padding_depth,
                                                             padding_height,
                                                             padding_width,
                                                             pool_compute,
                                                             exclusive,
                                                             adaptive,
                                                             output);
F
feng_shuai 已提交
1402 1403
}

C
chengduoZH 已提交
1404
/*
1405 1406 1407 1408 1409 1410 1411
 * Tensors are in NCDHW or NDHWC format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 * Paddings are six elements. These six elements represent depth_forth,
 * depth_back,
 * height_up, height_down, width_left and width_right, respectively.
 */
1412
template <typename PoolProcess, class T>
F
From00 已提交
1413
class Pool3dFunctor<phi::GPUContext, PoolProcess, T> {
1414
 public:
F
From00 已提交
1415 1416 1417
  void operator()(const phi::GPUContext& context,
                  const DenseTensor& input,
                  const std::vector<int>& ksize,
C
chengduo 已提交
1418
                  const std::vector<int>& strides,
F
From00 已提交
1419 1420 1421 1422
                  const std::vector<int>& paddings,
                  bool exclusive,
                  bool adaptive,
                  DenseTensor* output,
1423
                  PoolProcess pool_process) {
1424 1425 1426 1427 1428
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
C
chengduoZH 已提交
1429 1430 1431 1432
    const int output_channels = output->dims()[1];
    const int output_depth = output->dims()[2];
    const int output_height = output->dims()[3];
    const int output_width = output->dims()[4];
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const T* input_data = input.data<T>();
F
From00 已提交
1444
    T* output_data = context.template Alloc<T>(output);
1445 1446 1447

    int nthreads = batch_size * output_channels * output_depth * output_height *
                   output_width;
F
feng_shuai 已提交
1448 1449
    int thread_num = 1024;
#ifdef WITH_NV_JETSON
1450
    backends::gpu::ChangeThreadNum(context, &thread_num);
F
feng_shuai 已提交
1451 1452 1453
#endif
    int blocks = (nthreads + thread_num - 1) / thread_num;
    dim3 threads(thread_num, 1);
1454 1455
    dim3 grid(blocks, 1);

1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
    KernelPool3D<PoolProcess, T>
        <<<grid, threads, 0, context.stream()>>>(nthreads,
                                                 input_data,
                                                 input_channels,
                                                 input_depth,
                                                 input_height,
                                                 input_width,
                                                 output_depth,
                                                 output_height,
                                                 output_width,
                                                 ksize_depth,
                                                 ksize_height,
                                                 ksize_width,
                                                 stride_depth,
                                                 stride_height,
                                                 stride_width,
                                                 padding_depth,
                                                 padding_height,
                                                 padding_width,
                                                 pool_process,
                                                 exclusive,
                                                 adaptive,
                                                 output_data);
1479
  }
F
From00 已提交
1480 1481 1482
  void operator()(const phi::GPUContext& context,
                  const DenseTensor& input,
                  const std::vector<int>& ksize,
1483 1484
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
F
From00 已提交
1485 1486 1487 1488 1489
                  const std::string data_format,
                  bool exclusive,
                  bool adaptive,
                  DenseTensor* output,
                  PoolProcess pool_process) {
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
    bool channel_last = (data_format == "NDHWC");
    const int batch_size = input.dims()[0];

    const int input_channels = channel_last ? input.dims()[4] : input.dims()[1];
    const int input_depth = channel_last ? input.dims()[1] : input.dims()[2];
    const int input_height = channel_last ? input.dims()[2] : input.dims()[3];
    const int input_width = channel_last ? input.dims()[3] : input.dims()[4];

    const int output_channels =
        channel_last ? output->dims()[4] : output->dims()[1];
    const int output_depth =
        channel_last ? output->dims()[1] : output->dims()[2];
    const int output_height =
        channel_last ? output->dims()[2] : output->dims()[3];
    const int output_width =
        channel_last ? output->dims()[3] : output->dims()[4];

    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];

    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];

    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const T* input_data = input.data<T>();
F
From00 已提交
1520
    T* output_data = context.template Alloc<T>(output);
1521 1522 1523

    int nthreads = batch_size * output_channels * output_depth * output_height *
                   output_width;
F
feng_shuai 已提交
1524 1525
    int thread_num = 1024;
#ifdef WITH_NV_JETSON
1526
    backends::gpu::ChangeThreadNum(context, &thread_num);
F
feng_shuai 已提交
1527 1528 1529
#endif
    int blocks = (nthreads + thread_num - 1) / thread_num;
    dim3 threads(thread_num, 1);
1530 1531
    dim3 grid(blocks, 1);

1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
    KernelPool3D<PoolProcess, T>
        <<<grid, threads, 0, context.stream()>>>(nthreads,
                                                 input_data,
                                                 input_channels,
                                                 input_depth,
                                                 input_height,
                                                 input_width,
                                                 output_depth,
                                                 output_height,
                                                 output_width,
                                                 ksize_depth,
                                                 ksize_height,
                                                 ksize_width,
                                                 stride_depth,
                                                 stride_height,
                                                 stride_width,
                                                 padding_depth,
                                                 padding_height,
                                                 padding_width,
                                                 pool_process,
                                                 exclusive,
                                                 adaptive,
                                                 output_data,
                                                 channel_last);
1556
  }
1557 1558
};

C
chengduoZH 已提交
1559
/*
1560 1561 1562 1563 1564 1565 1566
 * Tensors are in NCDHW or NDHWC format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 * Paddings are six elements. These six elements represent depth_forth,
 * depth_back,
 * height_up, height_down, width_left and width_right, respectively.
 */
1567
template <typename PoolProcess, class T>
F
From00 已提交
1568
class Pool3dGradFunctor<phi::GPUContext, PoolProcess, T> {
1569
 public:
F
From00 已提交
1570 1571 1572 1573
  void operator()(const phi::GPUContext& context,
                  const DenseTensor& input,
                  const DenseTensor& output,
                  const DenseTensor& output_grad,
C
chengduo 已提交
1574 1575
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
F
From00 已提交
1576 1577 1578 1579
                  const std::vector<int>& paddings,
                  bool exclusive,
                  bool adaptive,
                  DenseTensor* input_grad,
1580
                  PoolProcess pool_process) {
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
F
From00 已提交
1603
    T* input_grad_data = context.template Alloc<T>(input_grad);
1604

1605 1606
    int nthreads =
        batch_size * input_channels * input_depth * input_height * input_width;
1607 1608 1609 1610
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
    KernelPool3DGrad<T, PoolProcess>
        <<<grid, threads, 0, context.stream()>>>(nthreads,
                                                 input_data,
                                                 output_data,
                                                 output_grad_data,
                                                 input_channels,
                                                 input_depth,
                                                 input_height,
                                                 input_width,
                                                 output_depth,
                                                 output_height,
                                                 output_width,
                                                 ksize_depth,
                                                 ksize_height,
                                                 ksize_width,
                                                 stride_depth,
                                                 stride_height,
                                                 stride_width,
                                                 padding_depth,
                                                 padding_height,
                                                 padding_width,
                                                 pool_process,
                                                 exclusive,
                                                 adaptive,
                                                 input_grad_data);
1636
  }
F
From00 已提交
1637 1638 1639 1640
  void operator()(const phi::GPUContext& context,
                  const DenseTensor& input,
                  const DenseTensor& output,
                  const DenseTensor& output_grad,
1641 1642 1643
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
F
From00 已提交
1644 1645 1646 1647 1648
                  const std::string data_format,
                  bool exclusive,
                  bool adaptive,
                  DenseTensor* input_grad,
                  PoolProcess pool_process) {
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
    bool channel_last = (data_format == "NDHWC");

    const int batch_size = input.dims()[0];
    const int input_channels = channel_last ? input.dims()[4] : input.dims()[1];
    const int input_depth = channel_last ? input.dims()[1] : input.dims()[2];
    const int input_height = channel_last ? input.dims()[2] : input.dims()[3];
    const int input_width = channel_last ? input.dims()[3] : input.dims()[4];

    const int output_channels =
        channel_last ? output.dims()[4] : output.dims()[1];
    const int output_depth = channel_last ? output.dims()[1] : output.dims()[2];
    const int output_height =
        channel_last ? output.dims()[2] : output.dims()[3];
    const int output_width = channel_last ? output.dims()[3] : output.dims()[4];

    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];

    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];

    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
F
From00 已提交
1679
    T* input_grad_data = context.template Alloc<T>(input_grad);
1680 1681 1682 1683 1684 1685 1686

    int nthreads =
        batch_size * input_channels * input_depth * input_height * input_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

L
limingshu 已提交
1687
    KernelPool3DGrad<T, PoolProcess><<<grid, threads, 0, context.stream()>>>(
F
From00 已提交
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
        nthreads,
        input_data,
        output_data,
        output_grad_data,
        input_channels,
        input_depth,
        input_height,
        input_width,
        output_depth,
        output_height,
        output_width,
        ksize_depth,
        ksize_height,
        ksize_width,
        stride_depth,
        stride_height,
        stride_width,
        padding_depth,
        padding_height,
        padding_width,
        pool_process,
        exclusive,
        adaptive,
        input_grad_data,
1712 1713
        channel_last);  // add channel_last
  }
1714 1715
};

C
chengduoZH 已提交
1716
/*
1717 1718 1719 1720 1721 1722 1723
 * tensors are in NCDHW or NDHWC format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 * Paddings are six elements. These six elements represent depth_forth,
 * depth_back,
 * height_up, height_down, width_left and width_right, respectively.
 */
1724
template <class T>
F
From00 已提交
1725
class MaxPool3dGradFunctor<phi::GPUContext, T> {
1726
 public:
F
From00 已提交
1727 1728 1729 1730
  void operator()(const phi::GPUContext& context,
                  const DenseTensor& input,
                  const DenseTensor& output,
                  const DenseTensor& output_grad,
C
chengduo 已提交
1731 1732 1733
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
F
From00 已提交
1734
                  DenseTensor* input_grad) {
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
F
From00 已提交
1757
    T* input_grad_data = context.template Alloc<T>(input_grad);
1758 1759 1760 1761 1762 1763 1764

    int nthreads = batch_size * output_channels * output_depth * output_height *
                   output_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
    KernelMaxPool3DGrad<T>
        <<<grid, threads, 0, context.stream()>>>(nthreads,
                                                 input_data,
                                                 output_data,
                                                 output_grad_data,
                                                 input_channels,
                                                 input_depth,
                                                 input_height,
                                                 input_width,
                                                 output_depth,
                                                 output_height,
                                                 output_width,
                                                 ksize_depth,
                                                 ksize_height,
                                                 ksize_width,
                                                 stride_depth,
                                                 stride_height,
                                                 stride_width,
                                                 padding_depth,
                                                 padding_height,
                                                 padding_width,
                                                 input_grad_data);
1787
  }
F
From00 已提交
1788 1789 1790 1791 1792 1793 1794 1795 1796
  void operator()(const phi::GPUContext& context,
                  const DenseTensor& input,
                  const DenseTensor& output,
                  const DenseTensor& output_grad,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  const std::string data_format,
                  DenseTensor* input_grad) {
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
    bool channel_last = (data_format == "NDHWC");
    const int batch_size = input.dims()[0];

    const int input_channels = channel_last ? input.dims()[4] : input.dims()[1];
    const int input_depth = channel_last ? input.dims()[1] : input.dims()[2];
    const int input_height = channel_last ? input.dims()[2] : input.dims()[3];
    const int input_width = channel_last ? input.dims()[3] : input.dims()[4];

    const int output_channels =
        channel_last ? output.dims()[4] : output.dims()[1];
    const int output_depth = channel_last ? output.dims()[1] : output.dims()[2];
    const int output_height =
        channel_last ? output.dims()[2] : output.dims()[3];
    const int output_width = channel_last ? output.dims()[3] : output.dims()[4];

    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];

    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];

    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
F
From00 已提交
1827
    T* input_grad_data = context.template Alloc<T>(input_grad);
1828 1829 1830 1831 1832 1833 1834 1835

    int nthreads = batch_size * output_channels * output_depth * output_height *
                   output_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

    KernelMaxPool3DGrad<T><<<grid, threads, 0, context.stream()>>>(
F
From00 已提交
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
        nthreads,
        input_data,
        output_data,
        output_grad_data,
        input_channels,
        input_depth,
        input_height,
        input_width,
        output_depth,
        output_height,
        output_width,
        ksize_depth,
        ksize_height,
        ksize_width,
        stride_depth,
        stride_height,
        stride_width,
        padding_depth,
        padding_height,
        padding_width,
        input_grad_data,
        channel_last);  // add channel_last
1858
  }
1859 1860
};

F
From00 已提交
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
template class Pool3dDirectCUDAFunctor<MaxPool<float>, float>;
template class Pool3dDirectCUDAFunctor<AvgPool<float>, float>;

template class MaxPool3dGradFunctor<phi::GPUContext, float>;
template class MaxPool3dGradFunctor<phi::GPUContext, double>;
template class MaxPool3dGradFunctor<phi::GPUContext, dtype::float16>;

template class Pool3dFunctor<phi::GPUContext, MaxPool<float>, float>;
template class Pool3dFunctor<phi::GPUContext, AvgPool<float>, float>;
template class Pool3dGradFunctor<phi::GPUContext, MaxPoolGrad<float>, float>;
template class Pool3dGradFunctor<phi::GPUContext, AvgPoolGrad<float>, float>;
template class Pool3dFunctor<phi::GPUContext, MaxPool<double>, double>;
template class Pool3dFunctor<phi::GPUContext, AvgPool<double>, double>;
template class Pool3dGradFunctor<phi::GPUContext, MaxPoolGrad<double>, double>;
template class Pool3dGradFunctor<phi::GPUContext, AvgPoolGrad<double>, double>;

template class Pool3dFunctor<phi::GPUContext,
                             MaxPool<dtype::float16>,
                             dtype::float16>;
template class Pool3dFunctor<phi::GPUContext,
                             AvgPool<dtype::float16>,
                             dtype::float16>;
template class Pool3dGradFunctor<phi::GPUContext,
                                 MaxPoolGrad<dtype::float16>,
                                 dtype::float16>;
template class Pool3dGradFunctor<phi::GPUContext,
                                 AvgPoolGrad<dtype::float16>,
                                 dtype::float16>;
1889

C
chengduoZH 已提交
1890
template <typename T1, typename T2>
F
From00 已提交
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
__global__ void KernelMaxPool2dWithIdx(const int nthreads,
                                       const T1* input_data,
                                       const int channels,
                                       const int input_height,
                                       const int input_width,
                                       const int output_height,
                                       const int output_width,
                                       const int ksize_height,
                                       const int ksize_width,
                                       const int stride_height,
                                       const int stride_width,
                                       const int padding_height,
                                       const int padding_width,
                                       bool adaptive,
                                       T1* output_data,
                                       T2* mask_data,
                                       FastDivModForPooling divmods) {
C
chengduoZH 已提交
1908
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
C
chengduoZH 已提交
1909
       index += blockDim.x * gridDim.x) {
L
limingshu 已提交
1910 1911
    int hstart, hend, wstart, wend;
    int w_offset, h_offset, c_offset, input_offset;
F
From00 已提交
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
    OffsetPreparationFor4Dimension<FastDivModForPooling>(index,
                                                         false,
                                                         divmods,
                                                         0,
                                                         0,
                                                         input_width,
                                                         input_height,
                                                         &w_offset,
                                                         &h_offset,
                                                         &c_offset,
                                                         &input_offset);
L
limingshu 已提交
1923
    input_data += input_offset;
C
chengduoZH 已提交
1924

1925
    if (adaptive) {
L
limingshu 已提交
1926 1927
      hstart = AdaptStartIndex(h_offset, input_height, output_height);
      hend = AdaptEndIndex(h_offset, input_height, output_height);
C
chengduoZH 已提交
1928

L
limingshu 已提交
1929 1930
      wstart = AdaptStartIndex(w_offset, input_width, output_width);
      wend = AdaptEndIndex(w_offset, input_width, output_width);
1931
    } else {
L
limingshu 已提交
1932
      hstart = h_offset * stride_height - padding_height;
1933 1934 1935
      hend = min(hstart + ksize_height, input_height);
      hstart = max(hstart, 0);

L
limingshu 已提交
1936
      wstart = w_offset * stride_width - padding_width;
1937 1938 1939
      wend = min(wstart + ksize_width, input_width);
      wstart = max(wstart, 0);
    }
C
chengduoZH 已提交
1940

C
chengduoZH 已提交
1941
    T1 ele = -FLT_MAX;
C
chengduoZH 已提交
1942
    int max_index = -1;
C
chengduoZH 已提交
1943 1944
    for (int h = hstart; h < hend; ++h) {
      for (int w = wstart; w < wend; ++w) {
C
chengduoZH 已提交
1945 1946 1947 1948
        int input_index = h * input_width + w;
        if (ele < input_data[input_index]) {
          max_index = input_index;
          ele = input_data[input_index];
C
chengduoZH 已提交
1949 1950 1951 1952
        }
      }
    }
    output_data[index] = ele;
C
chengduoZH 已提交
1953
    mask_data[index] = max_index;
C
chengduoZH 已提交
1954 1955 1956
  }
}

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
template <typename T1, typename T2>
__global__ void AdaptiveKernelMaxPool2dWithIdx(const int nthreads,
                                               const T1* input_data,
                                               const int channels,
                                               const int input_height,
                                               const int input_width,
                                               const int output_height,
                                               const int output_width,
                                               const int ksize_height,
                                               const int ksize_width,
                                               const int stride_height,
                                               const int stride_width,
                                               const int padding_height,
                                               const int padding_width,
                                               T1* output_data,
                                               T2* mask_data,
                                               FastDivModForPooling divmods) {
  const int n_offset = blockIdx.y;
  const int c_offset = blockIdx.x * blockDim.y + threadIdx.y;
  if (c_offset >= channels) {
    return;
  }
  int hstart, hend, wstart, wend;
  int input_offset =
      (n_offset * channels + c_offset) * input_height * input_width;
  int output_offset =
      (n_offset * channels + c_offset) * output_height * output_width;
  for (int hw_offset = threadIdx.x; hw_offset < output_height * output_width;
       hw_offset += blockDim.x) {
    int w_offset = hw_offset % output_width;
    int h_offset = hw_offset / output_width;
    hstart = AdaptStartIndex(h_offset, input_height, output_height);
    hend = AdaptEndIndex(h_offset, input_height, output_height);
    wstart = AdaptStartIndex(w_offset, input_width, output_width);
    wend = AdaptEndIndex(w_offset, input_width, output_width);

    T1 ele = -FLT_MAX;
    int max_index = -1;
    for (int h = hstart; h < hend; ++h) {
      for (int w = wstart; w < wend; ++w) {
        int input_index = h * input_width + w;
        if (ele < input_data[input_offset + input_index]) {
          max_index = input_index;
          ele = input_data[input_offset + input_index];
        }
      }
    }
    int output_idx = output_offset + h_offset * output_width + w_offset;
    output_data[output_idx] = ele;
    mask_data[output_idx] = max_index;
  }
}

C
chengduoZH 已提交
2010
template <typename T1, typename T2>
F
From00 已提交
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
__global__ void KernelMaxPool2DWithIdxGrad(const int nthreads,
                                           const T1* output_grad,
                                           const T2* mask_data,
                                           const int channels,
                                           const int input_height,
                                           const int input_width,
                                           const int output_height,
                                           const int output_width,
                                           const int ksize_height,
                                           const int ksize_width,
                                           const int stride_height,
                                           const int stride_width,
                                           const int padding_height,
                                           const int padding_width,
                                           bool adaptive,
                                           T1* input_grad,
                                           FastDivModForPooling divmods) {
C
chengduoZH 已提交
2028
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
C
chengduoZH 已提交
2029
       index += blockDim.x * gridDim.x) {
L
limingshu 已提交
2030 2031
    int phstart, phend, pwstart, pwend;
    int w_offset, h_offset, c_offset, output_offset;
F
From00 已提交
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
    OffsetPreparationFor4Dimension<FastDivModForPooling>(index,
                                                         false,
                                                         divmods,
                                                         0,
                                                         0,
                                                         output_width,
                                                         output_height,
                                                         &w_offset,
                                                         &h_offset,
                                                         &c_offset,
                                                         &output_offset);
L
limingshu 已提交
2043 2044
    mask_data += output_offset;
    output_grad += output_offset;
C
chengduoZH 已提交
2045

2046
    if (adaptive) {
D
dengkaipeng 已提交
2047
      phstart = h_offset * output_height / input_height;
2048
      phend =
D
dengkaipeng 已提交
2049 2050 2051 2052
          min((h_offset + 1) * output_height / input_height + 1, output_height);
      pwstart = w_offset * output_width / input_width;
      pwend =
          min((w_offset + 1) * output_width / input_width + 1, output_width);
2053 2054
    } else {
      phstart =
D
dengkaipeng 已提交
2055
          (h_offset + padding_height < ksize_height)
2056
              ? 0
D
dengkaipeng 已提交
2057
              : (h_offset + padding_height - ksize_height) / stride_height + 1;
2058
      pwstart =
D
dengkaipeng 已提交
2059
          (w_offset + padding_width < ksize_width)
2060
              ? 0
D
dengkaipeng 已提交
2061
              : (w_offset + padding_width - ksize_width) / stride_width + 1;
2062
      phend =
D
dengkaipeng 已提交
2063 2064
          min((h_offset + padding_height) / stride_height + 1, output_height);
      pwend = min((w_offset + padding_width) / stride_width + 1, output_width);
2065
    }
C
chengduoZH 已提交
2066

L
limingshu 已提交
2067
    T1 input_grad_data = 0;
D
dengkaipeng 已提交
2068
    int input_current_featuremap_idx = h_offset * input_width + w_offset;
2069 2070
    for (int ph = phstart; ph < phend; ++ph) {
      for (int pw = pwstart; pw < pwend; ++pw) {
C
chengduoZH 已提交
2071
        if (mask_data[ph * output_width + pw] == input_current_featuremap_idx)
L
limingshu 已提交
2072
          input_grad_data += output_grad[ph * output_width + pw];
C
chengduoZH 已提交
2073 2074
      }
    }
L
limingshu 已提交
2075
    input_grad[index] = input_grad_data;
C
chengduoZH 已提交
2076 2077 2078
  }
}

C
chengduoZH 已提交
2079 2080 2081 2082 2083
/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
C
chengduoZH 已提交
2084
template <typename T1, typename T2>
F
From00 已提交
2085
class MaxPool2dWithIndexFunctor<phi::GPUContext, T1, T2> {
C
chengduoZH 已提交
2086
 public:
F
From00 已提交
2087 2088 2089
  void operator()(const phi::GPUContext& context,
                  const DenseTensor& input,
                  const std::vector<int>& ksize,
C
chengduo 已提交
2090
                  const std::vector<int>& strides,
F
From00 已提交
2091 2092 2093 2094
                  const std::vector<int>& paddings,
                  bool adaptive,
                  DenseTensor* output,
                  DenseTensor* mask) {
C
chengduoZH 已提交
2095 2096 2097 2098
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
C
chengduoZH 已提交
2099 2100 2101
    const int output_channels = output->dims()[1];
    const int output_height = output->dims()[2];
    const int output_width = output->dims()[3];
C
chengduoZH 已提交
2102 2103 2104 2105 2106 2107 2108
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

C
chengduoZH 已提交
2109
    const T1* input_data = input.data<T1>();
F
From00 已提交
2110 2111
    T1* output_data = context.template Alloc<T1>(output);
    T2* mask_data = context.template Alloc<T2>(mask);
C
chengduoZH 已提交
2112 2113

    int nthreads = batch_size * output_channels * output_height * output_width;
L
limingshu 已提交
2114 2115
    auto pool_divmods =
        FastDivModForPooling(input_channels, output_width, output_height);
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
    if (adaptive && output_height > 1 && output_width > 1) {
      int max_threads = 512;
      int thread_num = std::min(
          phi::funcs::details::GetLastPow2(output_height * output_width),
          max_threads);
      int blocks = std::min(max_threads / thread_num, output_channels);
      dim3 threads(thread_num, blocks, 1);
      dim3 grid(
          std::max((output_channels + blocks - 1) / blocks, 1), batch_size, 1);
      AdaptiveKernelMaxPool2dWithIdx<T1, T2>
          <<<grid, threads, 0, context.stream()>>>(nthreads,
                                                   input_data,
                                                   input_channels,
                                                   input_height,
                                                   input_width,
                                                   output_height,
                                                   output_width,
                                                   ksize_height,
                                                   ksize_width,
                                                   stride_height,
                                                   stride_width,
                                                   padding_height,
                                                   padding_width,
                                                   output_data,
                                                   mask_data,
                                                   pool_divmods);
    } else {
      int thread_num = 1024;
#ifdef WITH_NV_JETSON
      backends::gpu::ChangeThreadNum(context, &thread_num);
#endif
      int blocks = (nthreads + thread_num - 1) / thread_num;
      dim3 threads(thread_num, 1);
      dim3 grid(blocks, 1);
      KernelMaxPool2dWithIdx<T1, T2>
          <<<grid, threads, 0, context.stream()>>>(nthreads,
                                                   input_data,
                                                   input_channels,
                                                   input_height,
                                                   input_width,
                                                   output_height,
                                                   output_width,
                                                   ksize_height,
                                                   ksize_width,
                                                   stride_height,
                                                   stride_width,
                                                   padding_height,
                                                   padding_width,
                                                   adaptive,
                                                   output_data,
                                                   mask_data,
                                                   pool_divmods);
    }
C
chengduoZH 已提交
2169 2170 2171
  }
};

C
chengduoZH 已提交
2172 2173 2174 2175 2176
/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
C
chengduoZH 已提交
2177
template <typename T1, typename T2>
F
From00 已提交
2178
class MaxPool2dWithIndexGradFunctor<phi::GPUContext, T1, T2> {
C
chengduoZH 已提交
2179
 public:
F
From00 已提交
2180 2181 2182 2183
  void operator()(const phi::GPUContext& context,
                  const DenseTensor& output_grad,
                  const DenseTensor& mask,
                  const std::vector<int>& ksize,
C
chengduo 已提交
2184
                  const std::vector<int>& strides,
F
From00 已提交
2185 2186 2187
                  const std::vector<int>& paddings,
                  bool adaptive,
                  DenseTensor* input_grad) {
C
chengduoZH 已提交
2188 2189 2190 2191
    const int batch_size = input_grad->dims()[0];
    const int input_channels = input_grad->dims()[1];
    const int input_height = input_grad->dims()[2];
    const int input_width = input_grad->dims()[3];
C
chengduoZH 已提交
2192 2193 2194 2195 2196 2197 2198 2199 2200
    const int output_height = output_grad.dims()[2];
    const int output_width = output_grad.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

C
chengduoZH 已提交
2201 2202
    const T2* mask_data = mask.data<T2>();
    const T1* output_grad_data = output_grad.data<T1>();
F
From00 已提交
2203
    T1* input_grad_data = context.template Alloc<T1>(input_grad);
C
chengduoZH 已提交
2204 2205 2206 2207 2208 2209

    int nthreads = batch_size * input_channels * input_height * input_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

L
limingshu 已提交
2210 2211
    auto pool_divmods =
        FastDivModForPooling(input_channels, input_width, input_height);
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
    KernelMaxPool2DWithIdxGrad<T1, T2>
        <<<grid, threads, 0, context.stream()>>>(nthreads,
                                                 output_grad_data,
                                                 mask_data,
                                                 input_channels,
                                                 input_height,
                                                 input_width,
                                                 output_height,
                                                 output_width,
                                                 ksize_height,
                                                 ksize_width,
                                                 stride_height,
                                                 stride_width,
                                                 padding_height,
                                                 padding_width,
                                                 adaptive,
                                                 input_grad_data,
                                                 pool_divmods);
C
chengduoZH 已提交
2230 2231 2232
  }
};

F
From00 已提交
2233 2234 2235 2236
template class MaxPool2dWithIndexFunctor<phi::GPUContext, float, int>;
template class MaxPool2dWithIndexGradFunctor<phi::GPUContext, float, int>;
template class MaxPool2dWithIndexFunctor<phi::GPUContext, double, int>;
template class MaxPool2dWithIndexGradFunctor<phi::GPUContext, double, int>;
C
chengduoZH 已提交
2237

C
chengduoZH 已提交
2238
template <typename T1, typename T2>
2239
__global__ void KernelMaxPool3DWithIdx(const int ncd,
F
From00 已提交
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
                                       const T1* input_data,
                                       const int channels,
                                       const int input_depth,
                                       const int input_height,
                                       const int input_width,
                                       const int output_depth,
                                       const int output_height,
                                       const int output_width,
                                       const int ksize_depth,
                                       const int ksize_height,
                                       const int ksize_width,
                                       const int stride_depth,
                                       const int stride_height,
                                       const int stride_width,
                                       const int padding_depth,
                                       const int padding_height,
                                       const int padding_width,
                                       bool adaptive,
                                       T1* output_data,
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
                                       T2* mask_data,
                                       FastDivModForPooling3D divmods_output) {
  int w_offset, h_offset, d_offset, nc_offset;
  int dstart, dend, hstart, hend, wstart, wend;
  const T1* input_data_cur;

  w_offset = blockIdx.x * blockDim.x + threadIdx.x;
  h_offset = blockIdx.y * blockDim.y + threadIdx.y;

  if (w_offset < output_width && h_offset < output_height) {
    for (int index_z = blockIdx.z * blockDim.z + threadIdx.z; index_z < ncd;
         index_z += gridDim.z * blockDim.z) {
      auto output_depth_divmod = divmods_output.depth.Divmod(index_z);
      d_offset = output_depth_divmod.val[1];
      nc_offset = output_depth_divmod.val[0];
      int output_index =
          nc_offset * output_depth * output_height * output_width +
          d_offset * output_height * output_width + h_offset * output_width +
          w_offset;
      int input_offset = nc_offset * input_depth * input_height * input_width;
      input_data_cur = input_data + input_offset;

      if (adaptive) {
        dstart = AdaptStartIndex(d_offset, input_depth, output_depth);
        dend = AdaptEndIndex(d_offset, input_depth, output_depth);

        hstart = AdaptStartIndex(h_offset, input_height, output_height);
        hend = AdaptEndIndex(h_offset, input_height, output_height);

        wstart = AdaptStartIndex(w_offset, input_width, output_width);
        wend = AdaptEndIndex(w_offset, input_width, output_width);
      } else {
        dstart = d_offset * stride_depth - padding_depth;
        hstart = h_offset * stride_height - padding_height;
        wstart = w_offset * stride_width - padding_width;
        dend = min(dstart + ksize_depth, input_depth);
        hend = min(hstart + ksize_height, input_height);
        wend = min(wstart + ksize_width, input_width);
        dstart = max(dstart, 0);
        hstart = max(hstart, 0);
        wstart = max(wstart, 0);
      }
C
chengduoZH 已提交
2301

2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
      T1 ele = -FLT_MAX;
      int max_index = -1;
      for (int d = dstart; d < dend; ++d) {
        for (int h = hstart; h < hend; ++h) {
          for (int w = wstart; w < wend; ++w) {
            if (ele <
                input_data_cur[(d * input_height + h) * input_width + w]) {
              max_index = (d * input_height + h) * input_width + w;
              ele = input_data_cur[max_index];
            }
C
chengduoZH 已提交
2312 2313 2314
          }
        }
      }
2315 2316
      output_data[output_index] = ele;
      mask_data[output_index] = max_index;
C
chengduoZH 已提交
2317 2318 2319 2320
    }
  }
}

C
chengduoZH 已提交
2321
template <typename T1, typename T2>
5
5u13 已提交
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
__global__ void KernelMaxPool3DWithIdxGrad(
    const int ncd,
    const T1* output_grad,
    const T2* mask,
    const int channels,
    const int input_depth,
    const int input_height,
    const int input_width,
    const int output_depth,
    const int output_height,
    const int output_width,
    const int ksize_depth,
    const int ksize_height,
    const int ksize_width,
    const int stride_depth,
    const int stride_height,
    const int stride_width,
    const int padding_depth,
    const int padding_height,
    const int padding_width,
    bool adaptive,
    T1* input_grad,
    FastDivModForPooling3D divmods_output) {
  int w_offset, h_offset, d_offset, nc_offset;
C
chengduoZH 已提交
2346

5
5u13 已提交
2347 2348
  w_offset = blockIdx.x * blockDim.x + threadIdx.x;
  h_offset = blockIdx.y * blockDim.y + threadIdx.y;
C
chengduoZH 已提交
2349

5
5u13 已提交
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
  if (w_offset < output_width && h_offset < output_height) {
    for (int index_z = blockIdx.z * blockDim.z + threadIdx.z; index_z < ncd;
         index_z += gridDim.z * blockDim.z) {
      auto output_depth_divmod = divmods_output.depth.Divmod(index_z);
      d_offset = output_depth_divmod.val[1];
      nc_offset = output_depth_divmod.val[0];
      int output_index =
          nc_offset * output_depth * output_height * output_width +
          d_offset * output_height * output_width + h_offset * output_width +
          w_offset;
      int max_index = mask[output_index];
      if (max_index != -1) {
        paddle::platform::CudaAtomicAdd(
            &input_grad[nc_offset * input_depth * input_height * input_width +
                        max_index],
            output_grad[output_index]);
C
chengduoZH 已提交
2366 2367 2368 2369 2370
      }
    }
  }
}

C
chengduoZH 已提交
2371 2372 2373 2374 2375
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
C
chengduoZH 已提交
2376
template <typename T1, typename T2>
F
From00 已提交
2377
class MaxPool3dWithIndexFunctor<phi::GPUContext, T1, T2> {
C
chengduoZH 已提交
2378
 public:
F
From00 已提交
2379 2380 2381
  void operator()(const phi::GPUContext& context,
                  const DenseTensor& input,
                  const std::vector<int>& ksize,
C
chengduo 已提交
2382
                  const std::vector<int>& strides,
F
From00 已提交
2383 2384 2385 2386
                  const std::vector<int>& paddings,
                  bool adaptive,
                  DenseTensor* output,
                  DenseTensor* mask) {
C
chengduoZH 已提交
2387 2388 2389 2390 2391
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
C
chengduoZH 已提交
2392 2393 2394 2395
    const int output_channels = output->dims()[1];
    const int output_depth = output->dims()[2];
    const int output_height = output->dims()[3];
    const int output_width = output->dims()[4];
C
chengduoZH 已提交
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

C
chengduoZH 已提交
2406
    const T1* input_data = input.data<T1>();
F
From00 已提交
2407 2408
    T1* output_data = context.template Alloc<T1>(output);
    T2* mask_data = context.template Alloc<T2>(mask);
C
chengduoZH 已提交
2409

2410
    int ncd = batch_size * input_channels * output_depth;
F
feng_shuai 已提交
2411

2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
    int thread_x = 32;
    int thread_y = 8;
    int thread_z = 1;
    dim3 threads(thread_x, thread_y, thread_z);
    std::array<int, 3> max_grid_dim = context.GetCUDAMaxGridDimSize();
    int block_x = (output_width + threads.x - 1) / threads.x;
    int block_y = (output_height + threads.y - 1) / threads.y;
    int block_z = (ncd > max_grid_dim[2] * threads.z)
                      ? max_grid_dim[2]
                      : (ncd + threads.z - 1) / threads.z;
    dim3 grid(block_x, block_y, block_z);

    auto pool_divmods_output = FastDivModForPooling3D(
        input_channels, output_width, output_height, output_depth);
C
chengduoZH 已提交
2426

2427
    KernelMaxPool3DWithIdx<T1, T2>
2428
        <<<grid, threads, 0, context.stream()>>>(ncd,
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
                                                 input_data,
                                                 input_channels,
                                                 input_depth,
                                                 input_height,
                                                 input_width,
                                                 output_depth,
                                                 output_height,
                                                 output_width,
                                                 ksize_depth,
                                                 ksize_height,
                                                 ksize_width,
                                                 stride_depth,
                                                 stride_height,
                                                 stride_width,
                                                 padding_depth,
                                                 padding_height,
                                                 padding_width,
                                                 adaptive,
                                                 output_data,
2448 2449
                                                 mask_data,
                                                 pool_divmods_output);
C
chengduoZH 已提交
2450 2451 2452
  }
};

C
chengduoZH 已提交
2453 2454 2455 2456 2457
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
C
chengduoZH 已提交
2458
template <typename T1, typename T2>
F
From00 已提交
2459
class MaxPool3dWithIndexGradFunctor<phi::GPUContext, T1, T2> {
C
chengduoZH 已提交
2460
 public:
F
From00 已提交
2461 2462 2463 2464
  void operator()(const phi::GPUContext& context,
                  const DenseTensor& output_grad,
                  const DenseTensor& mask,
                  const std::vector<int>& ksize,
C
chengduo 已提交
2465
                  const std::vector<int>& strides,
F
From00 已提交
2466 2467 2468
                  const std::vector<int>& paddings,
                  bool adaptive,
                  DenseTensor* input_grad) {
C
chengduoZH 已提交
2469 2470 2471 2472 2473
    const int batch_size = input_grad->dims()[0];
    const int input_channels = input_grad->dims()[1];
    const int input_depth = input_grad->dims()[2];
    const int input_height = input_grad->dims()[3];
    const int input_width = input_grad->dims()[4];
C
chengduoZH 已提交
2474 2475 2476
    const int output_depth = output_grad.dims()[2];
    const int output_height = output_grad.dims()[3];
    const int output_width = output_grad.dims()[4];
C
chengduoZH 已提交
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

C
chengduoZH 已提交
2487 2488
    const T1* output_grad_data = output_grad.data<T1>();
    const T2* mask_data = mask.data<T2>();
F
From00 已提交
2489
    T1* input_grad_data = context.template Alloc<T1>(input_grad);
C
chengduoZH 已提交
2490

5
5u13 已提交
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
    int ncd = batch_size * input_channels * output_depth;

    int thread_x = 32;
    int thread_y = 8;
    int thread_z = 1;
    dim3 threads(thread_x, thread_y, thread_z);
    std::array<int, 3> max_grid_dim = context.GetCUDAMaxGridDimSize();
    int block_x = (output_width + threads.x - 1) / threads.x;
    int block_y = (output_height + threads.y - 1) / threads.y;
    int block_z = (ncd > max_grid_dim[2] * threads.z)
                      ? max_grid_dim[2]
                      : (ncd + threads.z - 1) / threads.z;
    dim3 grid(block_x, block_y, block_z);

    auto pool_divmods_output = FastDivModForPooling3D(
        input_channels, output_width, output_height, output_depth);
C
chengduoZH 已提交
2507

2508
    KernelMaxPool3DWithIdxGrad<T1, T2>
5
5u13 已提交
2509
        <<<grid, threads, 0, context.stream()>>>(ncd,
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
                                                 output_grad_data,
                                                 mask_data,
                                                 input_channels,
                                                 input_depth,
                                                 input_height,
                                                 input_width,
                                                 output_depth,
                                                 output_height,
                                                 output_width,
                                                 ksize_depth,
                                                 ksize_height,
                                                 ksize_width,
                                                 stride_depth,
                                                 stride_height,
                                                 stride_width,
                                                 padding_depth,
                                                 padding_height,
                                                 padding_width,
                                                 adaptive,
5
5u13 已提交
2529 2530
                                                 input_grad_data,
                                                 pool_divmods_output);
C
chengduoZH 已提交
2531 2532 2533
  }
};

F
From00 已提交
2534 2535 2536 2537 2538 2539 2540
template class MaxPool3dWithIndexFunctor<phi::GPUContext, float, int>;
template class MaxPool3dWithIndexGradFunctor<phi::GPUContext, float, int>;
template class MaxPool3dWithIndexFunctor<phi::GPUContext, double, int>;
template class MaxPool3dWithIndexGradFunctor<phi::GPUContext, double, int>;

}  // namespace funcs
}  // namespace phi