interpolate_v2_op_xpu.cc 11.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include <memory>
#include <string>
#include <vector>

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/interpolate_op.h"

#ifdef PADDLE_WITH_XPU

namespace paddle {
namespace operators {

using framework::Tensor;
using DataLayout = framework::DataLayout;

inline std::vector<int> get_new_shape_xpu(
    const std::vector<const Tensor*>& list_new_shape_tensor) {
  // get tensor from
  std::vector<int> vec_new_shape;
  for (size_t i = 0; i < list_new_shape_tensor.size(); ++i) {
    auto tensor = list_new_shape_tensor[i];
    PADDLE_ENFORCE_EQ(
        tensor->dims(), framework::make_ddim({1}),
        platform::errors::InvalidArgument("shape of dim tensor should be [1]"));
    framework::Tensor temp;
    TensorCopySync(*tensor, platform::CPUPlace(), &temp);
    vec_new_shape.push_back(static_cast<int32_t>(*temp.data<int32_t>()));
  }

  return vec_new_shape;
}

template <typename T>
inline std::vector<T> get_new_data_from_tensor_xpu(
    const Tensor* new_data_tensor) {
  std::vector<T> vec_new_data;
  framework::Tensor cpu_starts_tensor;
  TensorCopySync(*new_data_tensor, platform::CPUPlace(), &cpu_starts_tensor);
  auto* new_data = cpu_starts_tensor.data<T>();
  vec_new_data = std::vector<T>(new_data, new_data + new_data_tensor->numel());
  return vec_new_data;
}

template <typename T>
class InterpolateV2XPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
    auto* output = ctx.Output<Tensor>("Out");

    auto input_dims = input->dims();
    PADDLE_ENFORCE_EQ(
        input_dims.size(), 4,
        platform::errors::External("XPU Interpolate kernel only support 2d"));

    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
    int n, c, in_d, in_h, in_w;
    ExtractNCDWH(input_dims, data_layout, &n, &c, &in_d, &in_h, &in_w);

    auto interp_method = ctx.Attr<std::string>("interp_method");
    bool align_corners = ctx.Attr<bool>("align_corners");
    int align_mode = ctx.Attr<int>("align_mode");

    int out_h = ctx.Attr<int>("out_h");
    int out_w = ctx.Attr<int>("out_w");
    float scale_h = -1;
    float scale_w = -1;

    auto list_new_size_tensor = ctx.MultiInput<framework::Tensor>("SizeTensor");
    if (list_new_size_tensor.size() > 0) {
      // have size tensor
      auto new_size = get_new_shape_xpu(list_new_size_tensor);
      out_h = new_size[0];
      out_w = new_size[1];
    } else {
      auto scale_tensor = ctx.Input<Tensor>("Scale");
      auto scale = ctx.Attr<std::vector<float>>("scale");
      if (scale_tensor != nullptr) {
        auto scale_data = get_new_data_from_tensor_xpu<float>(scale_tensor);
        if (scale_data.size() > 1) {
          scale_h = scale_data[0];
          scale_w = scale_data[1];
        } else {
          scale_h = scale_data[0];
          scale_w = scale_data[0];
        }
        PADDLE_ENFORCE_EQ(
            scale_w > 0 && scale_h > 0, true,
            platform::errors::InvalidArgument("scale  of Op(interpolate) "
                                              "should be greater than 0."));
      } else {
        if (scale.size() > 1) {
          scale_h = scale[0];
          scale_w = scale[1];

          PADDLE_ENFORCE_EQ(
              scale_w > 0 && scale_h > 0, true,
              platform::errors::InvalidArgument("scale  of Op(interpolate) "
                                                "should be greater than 0."));
        }
      }
      if (scale_h > 0. && scale_w > 0.) {
        out_h = static_cast<int>(in_h * scale_h);
        out_w = static_cast<int>(in_w * scale_w);
      }
      auto out_size = ctx.Input<Tensor>("OutSize");
      if (out_size != nullptr) {
        auto out_size_data = get_new_data_from_tensor<int>(out_size);
        out_h = out_size_data[0];
        out_w = out_size_data[1];
      }
    }
    PADDLE_ENFORCE_GT(out_h, 0, platform::errors::InvalidArgument(
                                    "out_h in Attr(out_shape) of "
                                    "Op(interpolate) "
                                    "should be greater than 0."));
    PADDLE_ENFORCE_GT(out_w, 0, platform::errors::InvalidArgument(
                                    "out_w in Attr(out_shape) of "
                                    "Op(interpolate) "
                                    "should be greater than 0."));
    framework::DDim dim_out;
    if (data_layout == DataLayout::kNCHW) {
      dim_out = {n, c, out_h, out_w};
    } else {
      dim_out = {n, out_h, out_w, c};
    }
    output->mutable_data<T>(dim_out, ctx.GetPlace());

    if (in_h == out_h && in_w == out_w) {
      framework::TensorCopy(*input, ctx.GetPlace(), output);
      return;
    }
    bool nearest = "nearest" == interp_method;
    int trans_mode = (align_corners) ? (0) : ((align_mode == 0) ? (1) : (2));
    auto& dev_ctx = ctx.template device_context<platform::XPUDeviceContext>();
    if (nearest) {
      PADDLE_ENFORCE_EQ((data_layout == DataLayout::kNCHW), true,
                        platform::errors::InvalidArgument(
                            "XPU nearest is only support NCHW"));
    }
    int r = xpu::interpolate2d<T>(dev_ctx.x_context(), input->data<T>(),
                                  output->data<T>(), n, c, in_h, in_w, out_h,
                                  out_w, nearest, trans_mode,
                                  (data_layout == DataLayout::kNCHW));
    PADDLE_ENFORCE_EQ(r, XPU_SUCCESS,
                      platform::errors::External("XPU interpolate2d kernel "
                                                 "return wrong value[%d %s]",
                                                 r, XPUAPIErrorMsg[r]));
  }
};

template <typename T>
class InterpolateV2GradXPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* output_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));

    auto output_grad_dims = output_grad->dims();

    PADDLE_ENFORCE_EQ(output_grad_dims.size(), 4,
                      platform::errors::External(
                          "XPU Interpolategrad kernel only support 2d"));

    auto* input = ctx.Input<Tensor>("X");
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
    int n, c, in_d, in_h, in_w;
    ExtractNCDWH(input->dims(), data_layout, &n, &c, &in_d, &in_h, &in_w);

    auto interp_method = ctx.Attr<std::string>("interp_method");
    bool align_corners = ctx.Attr<bool>("align_corners");
    int align_mode = ctx.Attr<int>("align_mode");

    int out_h = ctx.Attr<int>("out_h");
    int out_w = ctx.Attr<int>("out_w");
    float scale_h = -1;
    float scale_w = -1;

    auto list_new_size_tensor = ctx.MultiInput<framework::Tensor>("SizeTensor");
    if (list_new_size_tensor.size() > 0) {
      // have size tensor
      auto new_size = get_new_shape_xpu(list_new_size_tensor);
      out_h = new_size[0];
      out_w = new_size[1];
    } else {
      auto scale_tensor = ctx.Input<Tensor>("Scale");
      auto scale = ctx.Attr<std::vector<float>>("scale");
      if (scale_tensor != nullptr) {
        auto scale_data = get_new_data_from_tensor_xpu<float>(scale_tensor);
        if (scale_data.size() > 1) {
          scale_h = scale_data[0];
          scale_w = scale_data[1];
        } else {
          scale_h = scale_data[0];
          scale_w = scale_data[0];
        }
        PADDLE_ENFORCE_EQ(
            scale_w > 0 && scale_h > 0, true,
            platform::errors::InvalidArgument("scale  of Op(interpolate) "
                                              "should be greater than 0."));
      } else {
        if (scale.size() > 1) {
          scale_h = scale[0];
          scale_w = scale[1];

          PADDLE_ENFORCE_EQ(
              scale_w > 0 && scale_h > 0, true,
              platform::errors::InvalidArgument("scale  of Op(interpolate) "
                                                "should be greater than 0."));
        }
      }
      if (scale_h > 0. && scale_w > 0.) {
        out_h = static_cast<int>(in_h * scale_h);
        out_w = static_cast<int>(in_w * scale_w);
      }
      auto out_size = ctx.Input<Tensor>("OutSize");
      if (out_size != nullptr) {
        auto out_size_data = get_new_data_from_tensor<int>(out_size);
        out_h = out_size_data[0];
        out_w = out_size_data[1];
      }
    }

    framework::DDim dim_grad;
    if (data_layout == DataLayout::kNCHW) {
      dim_grad = {n, c, in_h, in_w};
    } else {
      dim_grad = {n, in_h, in_w, c};
    }
    input_grad->mutable_data<T>(dim_grad, ctx.GetPlace());

    auto& dev_ctx = ctx.template device_context<platform::XPUDeviceContext>();

    int r = XPU_SUCCESS;
    r = xpu::constant<T>(dev_ctx.x_context(), input_grad->data<T>(),
                         input_grad->numel(), static_cast<T>(0.0));
    PADDLE_ENFORCE_EQ(r, XPU_SUCCESS,
                      platform::errors::External(
                          "XPU constant in interpolate2d_grad kernel return "
                          "wrong value[%d %s]",
                          r, XPUAPIErrorMsg[r]));

    if (in_h == out_h && in_w == out_w) {
      framework::TensorCopy(*output_grad, ctx.GetPlace(), input_grad);
      return;
    }

    bool nearest = "nearest" == interp_method;
    int trans_mode = (align_corners) ? (0) : ((align_mode == 0) ? (1) : (2));

    if (nearest) {
      trans_mode = (align_corners) ? (0) : (2);
    }

    r = xpu::interpolate2d_grad<T>(dev_ctx.x_context(), output_grad->data<T>(),
                                   input_grad->data<T>(), n, c, in_h, in_w,
                                   out_h, out_w, nearest, trans_mode,
                                   (data_layout == DataLayout::kNCHW));
    PADDLE_ENFORCE_EQ(
        r, XPU_SUCCESS,
        platform::errors::External("XPU interpolate2d_grad kernel return "
                                   "wrong value[%d %s]",
                                   r, XPUAPIErrorMsg[r]));
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_XPU_KERNEL(bilinear_interp_v2, ops::InterpolateV2XPUKernel<float>);
REGISTER_OP_XPU_KERNEL(nearest_interp_v2, ops::InterpolateV2XPUKernel<float>);

REGISTER_OP_XPU_KERNEL(bilinear_interp_v2_grad,
                       ops::InterpolateV2GradXPUKernel<float>);
REGISTER_OP_XPU_KERNEL(nearest_interp_v2_grad,
                       ops::InterpolateV2GradXPUKernel<float>);
#endif