convolution_grad_kernel.cc 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/phi/kernels/sparse/convolution_grad_kernel.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
17
#include "paddle/phi/kernels/funcs/math_function.h"
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
#include "paddle/phi/kernels/sparse/cpu/convolution.h"

namespace phi {
namespace sparse {

// rulebook:
//[
//  [kernel_index],
//  [in_i],
//  [out_i],
//]
// x_grad = out_grad * transpose(kenrel)
// kernel_grad = transpose(x) * out_grad
template <typename T, typename Context>
void Conv3dGradKernel(const Context& dev_ctx,
                      const SparseCooTensor& x,
                      const DenseTensor& rulebook,
                      const DenseTensor& kernel,
                      const SparseCooTensor& out_grad,
                      const std::vector<int>& paddings,
                      const std::vector<int>& dilations,
                      const std::vector<int>& strides,
                      const int groups,
Z
zhangkaihuo 已提交
41
                      const bool subm,
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
                      DenseTensor* x_grad,
                      DenseTensor* kernel_grad) {
  const auto& kernel_dims = kernel.dims();
  const int kernel_size = kernel_dims[0] * kernel_dims[1] * kernel_dims[2];
  const int in_channels = kernel_dims[3];
  const int out_channels = kernel_dims[4];
  const int* rulebook_ptr = rulebook.data<int>();

  const int rulebook_len = rulebook.dims()[1];

  DenseTensorMeta in_features_meta(
      x.dtype(), {rulebook_len, in_channels}, DataLayout::NCHW);
  DenseTensorMeta d_x_features_meta(
      x.dtype(), {rulebook_len, in_channels}, DataLayout::NCHW);
  DenseTensorMeta out_grad_features_meta(
      x.dtype(), {rulebook_len, out_channels}, DataLayout::NCHW);
  phi::DenseTensor in_features =
      phi::Empty(dev_ctx, std::move(in_features_meta));
  phi::DenseTensor d_x_features =
      phi::Empty(dev_ctx, std::move(d_x_features_meta));
  phi::DenseTensor out_grad_features =
      phi::Empty(dev_ctx, std::move(out_grad_features_meta));

  T* in_features_ptr = in_features.data<T>();
  T* d_x_features_ptr = d_x_features.data<T>();
  T* out_grad_features_ptr = out_grad_features.data<T>();
  kernel_grad->Resize(kernel_dims);
  dev_ctx.Alloc(
      kernel_grad, kernel_grad->dtype(), kernel_grad->numel() * sizeof(T));
  T* d_kernel_ptr = kernel_grad->data<T>();
72
  memset(d_kernel_ptr, 0, sizeof(T) * kernel_grad->numel());
73

Z
zhangkaihuo 已提交
74
  int half_kernel_size = kernel_size / 2;
75
  auto blas = phi::funcs::GetBlas<Context, T>(dev_ctx);
Z
zhangkaihuo 已提交
76 77 78 79 80 81
  x_grad->Resize(x.non_zero_elements().dims());
  dev_ctx.Alloc(x_grad, x_grad->dtype(), sizeof(T) * x_grad->numel());
  T* x_grad_values_ptr = x_grad->data<T>();
  memset(x_grad_values_ptr, 0, sizeof(T) * x_grad->numel());
  memset(d_x_features_ptr, 0, sizeof(T) * d_x_features.numel());

82 83 84 85
  std::vector<int> offsets(kernel_size + 1), counter(kernel_size, 0);
  for (int i = 0; i < rulebook_len; i++) {
    counter[rulebook_ptr[i]] += 1;
  }
Z
zhangkaihuo 已提交
86
  int offset = 0, max_count = 0;
87 88 89
  for (int i = 0; i < kernel_size; i++) {
    offsets[i] = offset;
    offset += counter[i];
Z
zhangkaihuo 已提交
90 91 92
    if (i < half_kernel_size) {
      max_count = std::max(max_count, counter[i]);
    }
93 94 95
  }
  offsets[kernel_size] = offset;

Z
zhangkaihuo 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
  if (subm) {
    blas.GEMM(CblasTrans,
              CblasNoTrans,
              x.non_zero_elements().dims()[1],
              out_grad.non_zero_elements().dims()[1],
              x.non_zero_elements().dims()[0],
              static_cast<T>(1),
              x.non_zero_elements().data<T>(),
              out_grad.non_zero_elements().data<T>(),
              static_cast<T>(0),
              d_kernel_ptr + half_kernel_size * in_channels * out_channels);

    // call gemm: d_x = out_grad * transpose(kernel)
    // (n, out_channels) * (out_channels, in_channels)
    T* x_grad_ptr = x_grad->data<T>();
    blas.GEMM(CblasNoTrans,
              CblasTrans,
              out_grad.non_zero_elements().dims()[0],
              in_channels,
              out_grad.non_zero_elements().dims()[1],
              static_cast<T>(1),
              out_grad.non_zero_elements().data<T>(),
              kernel.data<T>() + half_kernel_size * in_channels * out_channels,
              static_cast<T>(0),
              x_grad_ptr);
    if (max_count == 0) {
      return;
    }
  }

  Gather<T>(x.non_zero_elements().data<T>(),
            rulebook_ptr + rulebook_len,
            rulebook_len,
            in_channels,
            in_features_ptr);
  Gather<T>(out_grad.non_zero_elements().data<T>(),
            rulebook_ptr + rulebook_len * 2,
            rulebook_len,
            out_channels,
            out_grad_features_ptr);

137 138
  const T* kernel_ptr = kernel.data<T>();
  for (int i = 0; i < kernel_size; i++) {
Z
zhangkaihuo 已提交
139
    if (counter[i] <= 0 || (subm && i == half_kernel_size)) {
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
      continue;
    }

    const int M = counter[i];
    const int K = in_channels;
    const int N = out_channels;
    T* tmp_in_ptr = in_features_ptr + offsets[i] * in_channels;
    T* tmp_out_grad_ptr = out_grad_features_ptr + offsets[i] * out_channels;
    const T* tmp_kernel_ptr = kernel_ptr + i * in_channels * out_channels;
    T* tmp_d_x_ptr = d_x_features_ptr + offsets[i] * out_channels;
    T* tmp_d_kernel_ptr = d_kernel_ptr + i * in_channels * out_channels;

    // call gemm: d_kernel = transpose(x) * out_grad
    // (in_channels, n) * (n, out_channels)
    blas.GEMM(CblasTrans,
              CblasNoTrans,
              M,
              N,
              K,
              static_cast<T>(1),
              tmp_in_ptr,
              tmp_out_grad_ptr,
              static_cast<T>(0),
              tmp_d_kernel_ptr);

    // call gemm: d_x = out_grad * transpose(kernel)
    // (n, out_channels) * (out_channels, in_channels)
    blas.GEMM(CblasNoTrans,
              CblasTrans,
              M,
              K,
              N,
              static_cast<T>(1),
              tmp_out_grad_ptr,
              tmp_kernel_ptr,
              static_cast<T>(0),
              tmp_d_x_ptr);
  }

  // 4. scatter
  Scatter<T>(d_x_features_ptr,
             rulebook.data<int>() + rulebook_len,
             rulebook_len,
             in_channels,
             x_grad_values_ptr);
}

}  // namespace sparse
}  // namespace phi

190
PD_REGISTER_KERNEL(sparse_conv3d_grad,
191 192 193 194 195 196 197
                   CPU,
                   ALL_LAYOUT,
                   phi::sparse::Conv3dGradKernel,
                   float,
                   double) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}