mkldnn_helper.h 6.8 KB
Newer Older
1
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.
T
tensor-tang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

16
#include <mkldnn.h>
17
#include <algorithm>
P
Physher 已提交
18
#include <memory>
G
gongweibao 已提交
19
#include <string>
20
#include <vector>
21
#include "paddle/fluid/framework/operator.h"
M
mozga-intel 已提交
22
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
23
namespace paddle {
24 25 26
#ifdef PADDLE_WITH_MKLDNN
using MKLDNNMemoryFormat = mkldnn::memory::format;
#endif
T
tensor-tang 已提交
27 28 29 30 31
namespace platform {

using MKLDNNStream = mkldnn::stream;
using MKLDNNEngine = mkldnn::engine;
using MKLDNNMemory = mkldnn::memory;
32
using MKLDNNMemoryDescriptor = mkldnn::memory::desc;
T
tensor-tang 已提交
33 34 35
using MKLDNNPrimitive = mkldnn::primitive;
using MKLDNNPrimitiveDesc = mkldnn::handle<mkldnn_primitive_desc_t>;

36 37 38 39 40
typedef std::unique_ptr<MKLDNNStream> MKLDNNStreamPtr;
typedef std::unique_ptr<MKLDNNEngine> MKLDNNEnginePtr;
typedef std::unique_ptr<MKLDNNMemory> MKLDNNMemoryPtr;
typedef std::unique_ptr<MKLDNNPrimitive> MKLDNNPrimitivePtr;
typedef std::unique_ptr<MKLDNNPrimitiveDesc> MKLDNNPrimitiveDescPtr;
T
tensor-tang 已提交
41

42 43 44 45 46
template <typename Type>
void* to_void_cast(const Type* t) {
  return static_cast<void*>(const_cast<Type*>(t));
}

K
Krzysztof Binias 已提交
47 48 49 50 51
template <typename Type>
void* to_void_reinterpret_cast(const Type* t) {
  return reinterpret_cast<void*>(const_cast<Type*>(t));
}

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
template <class Type>
using tf_desc = typename Type::desc;

template <class Type>
using tf_pd = typename Type::primitive_desc;

template <typename Type, typename Engine, typename... Args>
std::shared_ptr<tf_pd<Type>> MKLDNNFwdPrimitiveDesc(const Engine& e,
                                                    Args&&... args) {
  auto desc = tf_desc<Type>(mkldnn::prop_kind::forward, (args)...);
  auto pd = new tf_pd<Type>(desc, e);
  return std::shared_ptr<tf_pd<Type>>(pd);
}

template <typename Type, typename Engine, typename Primitive, typename... Args>
tf_pd<Type> MKLDNNBwdPrimitiveDesc(const Engine& e, const Primitive& p,
                                   Args&&... args) {
  auto desc = tf_desc<Type>(args...);
  return tf_pd<Type>(desc, e, p);
}

73 74
inline mkldnn::memory::desc MKLDNNMemDesc(const std::vector<int>& dims,
                                          mkldnn::memory::data_type data_type,
75
                                          MKLDNNMemoryFormat format) {
76 77 78 79 80 81 82 83 84
  mkldnn::memory::dims tz = dims;
  return mkldnn::memory::desc({tz}, data_type, format);
}

inline bool CanMKLDNNBeUsed(const framework::ExecutionContext& ctx) {
  bool use_mkldnn = ctx.Attr<bool>("use_mkldnn");
  return use_mkldnn && platform::is_cpu_place(ctx.GetPlace());
}

85 86
template <typename Type>
mkldnn::memory::data_type MKLDNNGetDataType() {
87
  return mkldnn::memory::data_type::data_undef;
88 89 90 91
}

template <>
inline mkldnn::memory::data_type MKLDNNGetDataType<float>() {
92 93 94 95 96
  return mkldnn::memory::data_type::f32;
}
template <>
inline mkldnn::memory::data_type MKLDNNGetDataType<int32_t>() {
  return mkldnn::memory::data_type::s32;
97
}
P
Physher 已提交
98 99
template <>
inline mkldnn::memory::data_type MKLDNNGetDataType<int8_t>() {
100
  return mkldnn::memory::data_type::s8;
P
Physher 已提交
101 102 103
}
template <>
inline mkldnn::memory::data_type MKLDNNGetDataType<uint8_t>() {
104
  return mkldnn::memory::data_type::u8;
P
Physher 已提交
105 106
}

M
mozga-intel 已提交
107 108 109 110 111 112 113
inline void Reorder(const mkldnn::memory& src, const mkldnn::memory& dst) {
  auto reorder_prim = mkldnn::reorder(src, dst);
  std::vector<mkldnn::primitive> pipeline;
  pipeline.push_back(reorder_prim);
  mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
}

114 115
inline MKLDNNMemoryFormat GetMKLDNNFormat(const mkldnn::memory memory) {
  return static_cast<MKLDNNMemoryFormat>(
M
mozga-intel 已提交
116 117 118
      memory.get_primitive_desc().desc().data.format);
}

119
inline MKLDNNMemoryFormat GetMKLDNNFormat(
120
    const mkldnn::sum::primitive_desc& memory) {
121
  return static_cast<MKLDNNMemoryFormat>(
122 123 124
      memory.dst_primitive_desc().desc().data.format);
}

125 126
inline MKLDNNMemoryFormat MKLDNNFormatForSize(size_t dims_size,
                                              MKLDNNMemoryFormat data_format) {
127
  if (dims_size == 1) {
128
    return MKLDNNMemoryFormat::x;
129
  } else if (dims_size == 2) {
130
    return MKLDNNMemoryFormat::nc;
131
  } else if (dims_size == 3) {
132 133 134 135
    if (data_format == MKLDNNMemoryFormat::nchw) {
      return MKLDNNMemoryFormat::ncw;
    } else if (data_format == MKLDNNMemoryFormat::nhwc) {
      return MKLDNNMemoryFormat::nwc;
136
    }
137
  } else if (dims_size == 4) {
138 139
    if (data_format == MKLDNNMemoryFormat::goihw) {
      return MKLDNNMemoryFormat::oihw;
140
    }
141
  } else if (dims_size == 5) {
142 143
    if (data_format == MKLDNNMemoryFormat::goidhw) {
      return MKLDNNMemoryFormat::oidhw;
144
    }
145 146 147 148
    if (data_format == MKLDNNMemoryFormat::nchw) {
      return MKLDNNMemoryFormat::ncdhw;
    } else if (data_format == MKLDNNMemoryFormat::nhwc) {
      return MKLDNNMemoryFormat::ndhwc;
149
    }
150 151 152 153
  }
  return data_format;
}

154
inline MKLDNNMemoryFormat data_format_to_memory_format(
155 156 157
    const std::string& data_format) {
  switch (framework::StringToDataLayout(data_format)) {
    case framework::DataLayout::kNHWC:
158
      return MKLDNNMemoryFormat::nhwc;
159
    case framework::DataLayout::kNCHW:
160
      return MKLDNNMemoryFormat::nchw;
161
    default:
162
      return MKLDNNMemoryFormat::any;
163 164 165
  }
}

166
inline MKLDNNMemoryFormat StringToMKLDNNFormat(std::string* format) {
167 168 169
  std::transform(format->begin(), format->end(), format->begin(), ::tolower);

  if (!format->compare("nchw")) {
170
    return MKLDNNMemoryFormat::nchw;
171
  } else if (!format->compare("nchw16c")) {
172
    return MKLDNNMemoryFormat::nChw16c;
173
  } else if (!format->compare("nchw8c")) {
174
    return MKLDNNMemoryFormat::nChw8c;
175
  } else if (!format->compare("nhwc")) {
176
    return MKLDNNMemoryFormat::nhwc;
177
  } else {
178
    return MKLDNNMemoryFormat::any;
179 180 181
  }
}

A
Adam 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
inline std::string ThreadIDasStr(void) {
  return std::to_string(
      std::hash<std::thread::id>()(std::this_thread::get_id()));
}

inline std::string dims2str(const mkldnn::memory::dims& operand_dims) {
  std::string dstr = "";
  for (size_t i = 0; i < operand_dims.size(); ++i) {
    dstr += std::to_string(operand_dims[i]) + "-";
  }
  return dstr;
}

inline void AppendKey(std::string* key, const std::string& s) {
  key->append(s);
}

inline std::string GetHash(const mkldnn::memory::dims& operand_dims,
                           const std::string& suffix) {
  return dims2str(operand_dims) + suffix;
}

inline void AppendKeyDims(std::string* key, const mkldnn::memory::dims& dims) {
  for (unsigned int i = 0; i < dims.size(); i++) {
    AppendKey(key, std::to_string(dims[i]));
  }
}

T
tensor-tang 已提交
210 211
}  // namespace platform
}  // namespace paddle