api_base.py 45.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import re
16
import collections
17

18
PREFIX_TENSOR_NAME = 'input_'
19 20 21 22
PREFIX_META_TENSOR_NAME = 'meta_'


class BaseAPI(object):
23

24 25 26 27 28 29 30 31 32 33 34 35
    def __init__(self, api_item_yaml):
        self.api = self.get_api_name(api_item_yaml)

        # inputs:
        #     names : [], list of input names
        #     input_info : {input_name : type}
        # attrs:
        #     names : [], list of attribute names
        #     attr_info : { attr_name : (type, default_values)}
        # outputs:
        #     names : [], list of output names
        #     types : [], list of output types
36
        #     out_size_expr : [], expression for getting size of vector<Tensor>
37
        self.inputs, self.attrs, self.outputs, self.optional_vars = self.parse_args(
38 39 40 41 42 43 44
            self.api, api_item_yaml)

        self.is_base_api = True
        if 'invoke' in api_item_yaml:
            self.is_base_api = False
            self.invoke = api_item_yaml['invoke']
        else:
45
            if 'infer_meta' in api_item_yaml:
46 47
                self.infer_meta = self.parse_infer_meta(
                    api_item_yaml['infer_meta'])
48 49
            self.kernel = self.parse_kernel(api_item_yaml['kernel'])
            self.data_transform = self.parse_data_transform(api_item_yaml)
50
            self.inplace_map, self.view_map = {}, {}
51 52 53 54

    def get_api_name(self, api_item_yaml):
        return api_item_yaml['api']

55 56 57
    def get_api_func_name(self):
        return self.api

58 59 60
    def get_input_tensor_args(self, inplace_flag=False):
        input_args = []
        inplace_type_map = {
61 62 63 64 65 66 67 68
            "const Tensor&":
            "Tensor&",
            "const paddle::optional<Tensor>&":
            "paddle::optional<Tensor>&",
            "const std::vector<Tensor>&":
            "std::vector<Tensor>&",
            "const paddle::optional<std::vector<Tensor>>&":
            "paddle::optional<std::vector<Tensor>>&"
69 70 71 72
        }
        for name in self.inputs['names']:
            name = name.split('@')[0]
            if inplace_flag and name in self.inplace_map.values():
73 74 75
                input_args.append(
                    inplace_type_map[self.inputs['input_info'][name]] + ' ' +
                    name)
76 77 78 79 80 81 82 83 84 85 86 87
            else:
                input_args.append(self.inputs['input_info'][name] + ' ' + name)
        return input_args

    def get_declare_args(self, inplace_flag=False):
        declare_args = self.get_input_tensor_args(inplace_flag)
        for name in self.attrs['names']:
            default_value = ''
            if self.attrs['attr_info'][name][1] is not None:
                default_value = ' = ' + self.attrs['attr_info'][name][1]
            declare_args.append(self.attrs['attr_info'][name][0] + ' ' + name +
                                default_value)
88

89 90 91 92 93 94 95 96
        return ", ".join(declare_args)

    def get_define_args(self, inplace_flag=False):
        define_args = self.get_input_tensor_args(inplace_flag)
        for name in self.attrs['names']:
            define_args.append(self.attrs['attr_info'][name][0] + ' ' + name)

        return ", ".join(define_args)
97

98
    def parse_args(self, api_name, api_item_yaml):
99 100 101 102 103
        optional_vars = []
        if 'optional' in api_item_yaml:
            optional_vars = [
                item.strip() for item in api_item_yaml['optional'].split(',')
            ]
104 105 106
        inputs, attrs = self.parse_input_and_attr(api_name,
                                                  api_item_yaml['args'],
                                                  optional_vars)
107
        output_type_list, output_names, out_size_expr = self.parse_output(
108 109 110 111
            api_name, api_item_yaml['output'])
        return inputs, attrs, {
            'names': output_names,
            'types': output_type_list,
112 113
            'out_size_expr': out_size_expr
        }, optional_vars
114

115
    def parse_input_and_attr(self, api_name, args_config, optional_vars=[]):
116 117 118 119 120 121 122
        inputs = {'names': [], 'input_info': {}}
        attrs = {'names': [], 'attr_info': {}}
        args_str = args_config.strip()
        assert args_str.startswith('(') and args_str.endswith(')'), \
            f"Args declaration should start with '(' and end with ')', please check the args of {api_name} in yaml."
        args_str = args_str[1:-1]
        args_list = args_str.split(',')
Z
zyfncg 已提交
123 124 125 126
        input_types_map = {
            'Tensor': 'const Tensor&',
            'Tensor[]': 'const std::vector<Tensor>&'
        }
127
        attr_types_map = {
128
            'IntArray': 'const IntArray&',
129
            'Scalar': 'const Scalar&',
130 131 132 133
            'Scalar(int)': 'const Scalar&',
            'Scalar(int64_t)': 'const Scalar&',
            'Scalar(float)': 'const Scalar&',
            'Scalar(dobule)': 'const Scalar&',
134
            'Scalar[]': 'const std::vector<phi::Scalar>&',
135
            'int': 'int',
136 137
            'int32_t': 'int32_t',
            'int64_t': 'int64_t',
138 139 140
            'long': 'long',
            'size_t': 'size_t',
            'float': 'float',
141
            'float[]': 'const std::vector<float>&',
142 143
            'double': 'double',
            'bool': 'bool',
144
            'str': 'const std::string&',
145
            'str[]': 'const std::vector<std::string>&',
146
            'Place': 'const Place&',
147 148
            'DataLayout': 'DataLayout',
            'DataType': 'DataType',
149
            'int64_t[]': 'const std::vector<int64_t>&',
Z
zhiboniu 已提交
150
            'int[]': 'const std::vector<int>&',
151 152
        }
        optional_types_trans = {
153
            'Tensor': 'const paddle::optional<Tensor>&',
154 155
            'Tensor[]': 'const paddle::optional<std::vector<Tensor>>&',
            'int': 'paddle::optional<int>',
156 157
            'int32_t': 'paddle::optional<int32_t>',
            'int64_t': 'paddle::optional<int64_t>',
158 159 160
            'float': 'paddle::optional<float>',
            'double': 'paddle::optional<double>',
            'bool': 'paddle::optional<bool>',
161
            'Place': 'paddle::optional<const Place&>',
162
            'DataLayout': 'paddle::optional<DataLayout>',
163
            'DataType': 'paddle::optional<DataType>'
164 165
        }

166 167
        for item in args_list:
            item = item.strip()
Z
zyfncg 已提交
168
            type_and_name = item.split(' ')
169 170
            # match the input tensor
            has_input = False
Z
zyfncg 已提交
171 172 173
            for in_type_symbol, in_type in input_types_map.items():
                if type_and_name[0] == in_type_symbol:
                    input_name = type_and_name[1].strip()
174 175 176 177 178
                    assert len(input_name) > 0, \
                        f"The input tensor name should not be empty. Please check the args of {api_name} in yaml."
                    assert len(attrs['names']) == 0, \
                        f"The input Tensor should appear before attributes. please check the position of {api_name}:input({input_name}) in yaml"

179 180 181
                    if input_name in optional_vars:
                        in_type = optional_types_trans[in_type_symbol]

182 183 184 185 186 187 188 189
                    inputs['names'].append(input_name)
                    inputs['input_info'][input_name] = in_type
                    has_input = True
                    break
            if has_input:
                continue

            # match the attribute
Z
zyfncg 已提交
190 191 192
            for attr_type_symbol, attr_type in attr_types_map.items():
                if type_and_name[0] == attr_type_symbol:
                    attr_name = item[len(attr_type_symbol):].strip()
193 194 195 196 197 198 199 200
                    assert len(attr_name) > 0, \
                        f"The attribute name should not be empty. Please check the args of {api_name} in yaml."
                    default_value = None
                    if '=' in attr_name:
                        attr_infos = attr_name.split('=')
                        attr_name = attr_infos[0].strip()
                        default_value = attr_infos[1].strip()

201 202 203
                    if attr_name in optional_vars:
                        attr_type = optional_types_trans[attr_type_symbol]

204 205 206 207 208
                    default_value_str = "" if default_value is None else '=' + default_value
                    attrs['names'].append(attr_name)
                    attrs['attr_info'][attr_name] = (attr_type, default_value)
                    break

209
        return inputs, attrs
210 211

    def parse_output(self, api_name, output_config):
212

213
        def parse_output_item(output_item):
Z
zyfncg 已提交
214 215 216 217
            output_type_map = {
                'Tensor': 'Tensor',
                'Tensor[]': 'std::vector<Tensor>'
            }
218 219 220 221 222 223 224 225 226 227 228 229 230 231
            result = re.search(
                r"(?P<out_type>[a-zA-Z0-9_[\]]+)\s*(?P<name>\([a-zA-Z0-9_@]+\))?\s*(?P<expr>\{[^\}]+\})?",
                output_item)
            assert result is not None, f"{api_name} : the output config parse error."
            out_type = result.group('out_type')
            assert out_type in output_type_map, \
                f"{api_name} : Output type error: the output type only support Tensor and Tensor[], \
                  but now is {out_type}."

            out_name = 'out' if result.group('name') is None else result.group(
                'name')[1:-1]
            out_size_expr = None if result.group(
                'expr') is None else result.group('expr')[1:-1]
            return output_type_map[out_type], out_name, out_size_expr
232 233 234 235

        temp_list = output_config.split(',')

        if len(temp_list) == 1:
236
            out_type, out_name, size_expr = parse_output_item(temp_list[0])
237
            return [out_type], [out_name], [size_expr]
238 239 240
        else:
            out_type_list = []
            out_name_list = []
241
            out_size_expr_list = []
242
            for output_item in temp_list:
243
                out_type, out_name, size_expr = parse_output_item(output_item)
244 245
                out_type_list.append(out_type)
                out_name_list.append(out_name)
246
                out_size_expr_list.append(size_expr)
247

248
            return out_type_list, out_name_list, out_size_expr_list
249

250 251 252 253 254 255 256 257 258 259 260 261 262 263
    def parse_infer_meta(self, infer_meta_config):
        infer_meta = infer_meta_config
        if 'param' not in infer_meta_config:
            infer_meta['param'] = None

        return infer_meta

    def parse_kernel(self, kernel_config):
        # kernel :
        #    func : [], Kernel functions (example: scale, scale_sr)
        #    param : [], Input params of kernel
        #    backend : str, the names of param to choose the kernel backend, default is None
        #    layout : str, the names of param to choose the kernel layout, default is None
        #    data_type : str, the names of param to choose the kernel data_type, default is None
264
        #    dispatch : {}, the key is kernel_func, the value is type of inputs and outputs for kernel (example: {kernel_name : (['dense','sparse_coo']#input,['sparse_coo']#output)})
265 266 267 268 269
        kernel = {
            'func': [],
            'param': None,
            'backend': None,
            'layout': None,
Z
zyfncg 已提交
270
            'data_type': None,
271 272
            'use_gpudnn': 'false',
            'dispatch': {}
273 274 275 276 277 278 279 280 281
        }
        if 'backend' in kernel_config and len(kernel_config['backend']) > 0:
            kernel['backend'] = kernel_config['backend']
        if 'layout' in kernel_config and len(kernel_config['layout']) > 0:
            kernel['layout'] = kernel_config['layout']
        if 'data_type' in kernel_config and len(kernel_config['data_type']) > 0:
            kernel['data_type'] = kernel_config['data_type']
        if 'param' in kernel_config:
            kernel['param'] = kernel_config['param']
282 283 284 285
        if 'use_gpudnn' in kernel_config:
            kernel['use_gpudnn'] = kernel_config['use_gpudnn']
            if isinstance(kernel['use_gpudnn'], bool):
                kernel['use_gpudnn'] = str(kernel['use_gpudnn']).lower()
286 287 288 289 290 291 292 293 294
        kernel_funcs = re.compile(r'([a-zA-Z0-9_]+)\s*({[^}]+})?').findall(
            kernel_config['func'])

        def parse_kernel_in_out_type(in_out_str):
            if len(in_out_str) == 0:
                return None
            tmp_in_out_list = in_out_str[1:-1].split('->')
            inputs = [item.strip() for item in tmp_in_out_list[0].split(',')]
            outputs = [item.strip() for item in tmp_in_out_list[1].split(',')]
295 296 297 298 299 300 301 302 303 304 305

            # check the tensor type
            for item in inputs:
                assert item in [
                    'dense', 'selected_rows', 'sparse_coo', 'sparse_csr'
                ], f"{self.api} : Invalid input tensor type ('{item}'), here we only support 'dense', 'selected_rows', 'sparse_coo' and 'sparse_csr'."
            for item in outputs:
                assert item in [
                    'dense', 'selected_rows', 'sparse_coo', 'sparse_csr'
                ], f"{self.api} : Invalid output tensor type ('{item}'), here we only support 'dense', 'selected_rows', 'sparse_coo' and 'sparse_csr'."

306 307 308 309 310 311
            return (inputs, outputs)

        for func_item in kernel_funcs:
            kernel['func'].append(func_item[0])
            kernel['dispatch'][func_item[0]] = parse_kernel_in_out_type(
                func_item[1])
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326

        return kernel

    def parse_data_transform(self, api_item_yaml):
        data_transform = {'skip_transform': [], 'support_trans_dtype': []}
        if 'data_transform' in api_item_yaml:
            if 'skip_transform' in api_item_yaml['data_transform']:
                data_transform['skip_transform'] = api_item_yaml[
                    'data_transform']['skip_transform']
            if 'support_trans_dtype' in api_item_yaml['data_transform']:
                data_transform['support_trans_dtype'] = api_item_yaml[
                    'data_transform']['support_trans_dtype']

        return data_transform

327
    # Override by child class
328
    def get_return_type(self, inplace_flag=False):
329 330 331
        return None

    def gene_api_declaration(self):
332 333 334 335 336
        api_declaration = ""
        api_func_name = self.get_api_func_name()
        if api_func_name[-1] != '_':
            api_declaration = f"""
PADDLE_API {self.get_return_type()} {api_func_name}({self.get_declare_args()});
337 338
"""

339 340 341
        if self.is_base_api and len(self.inplace_map) > 0:
            if api_func_name[-1] != '_':
                api_func_name += '_'
342
            api_declaration = api_declaration + f"""
343
PADDLE_API {self.get_return_type(inplace_flag=True)} {api_func_name}({self.get_declare_args(inplace_flag=True)});
344 345 346 347
"""

        return api_declaration

348 349 350 351 352 353 354 355 356
    # Backward API Override this method
    def gene_kernel_backend_select(self):
        backend_select_code = ""
        if self.kernel['backend'] is not None:
            if '>' in self.kernel['backend']:
                vars_list = self.kernel['backend'].split('>')
                assert len(
                    vars_list
                ) == 2, f"{self.api} api: The number of params to set backend with '>' only allows 2, but received {len(vars_list)}."
357
                assert (vars_list[0].strip() in self.attrs['names']) and (self.attrs['attr_info'][vars_list[0].strip()][0] == 'const Place&'), \
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
                    f"{self.api} api: When use '>' to set kernel backend, the first param should be a attribute with Place type."
                backend_select_code = f"""
  kernel_backend = ParseBackendWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""

            else:
                backend_args = [
                    ele.strip() for ele in self.kernel['backend'].split(',')
                ]
                backend_select_code = f"""
  kernel_backend = ParseBackend({", ".join(backend_args)});
"""

        return backend_select_code

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
    def gene_kernel_select(self) -> str:
        api = self.api
        input_names = self.inputs['names']
        attrs = self.attrs
        kernel = self.kernel

        kernel_key_item_init = """
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;
"""
        # Check the tensor options
        attr_backend_count = 0
        attr_layout_count = 0
        attr_data_type_count = 0
        for attr_name in attrs['names']:
389
            if attrs['attr_info'][attr_name][0] == 'const Place&':
390
                assert kernel['backend'] is not None, \
391
                    f"{api} api: When there is a parameter with 'Place' type in attributes, you must set backend of kernel manually."
392 393 394 395 396 397 398 399 400 401 402
                attr_backend_count = attr_backend_count + 1
            if attrs['attr_info'][attr_name][0] == 'DataLayout':
                assert kernel['layout'] is not None, \
                    f"{api} api: When there is a parameter with 'DataLayout' type in attributes, you must set layout of kernel manually."
                attr_layout_count = attr_layout_count + 1
            if attrs['attr_info'][attr_name][0] == 'DataType':
                assert kernel['data_type'] is not None, \
                    f"{api} api: When there is a parameter with 'DataType' type in attributes, you must set data_type of kernel manually."
                attr_data_type_count = attr_data_type_count + 1

        # preprocess kernel configures
403
        kernel_select_code = self.gene_kernel_backend_select()
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441

        if kernel['layout'] is not None:
            if '>' in kernel['layout']:
                vars_list = kernel['layout'].split('>')
                assert len(
                    vars_list
                ) == 2, f"{api} api: The number of params to set layout with '>' only allows 2, but received {len(vars_list)}."
                assert vars_list[0].strip() in attrs['names'] and attrs['attr_info'][vars_list[0].strip()][0] == 'DataLayout', \
                    f"{api} api: When use '>' to set kernel layout, the first param should be a attribute with DataLayout type."
                kernel_select_code = kernel_select_code + f"""
  kernel_layout = ParseLayoutWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""

            else:
                vars_list = kernel['layout'].split(',')
                assert len(
                    vars_list
                ) == 1, f"{api} api: The number of params to set layout must be 1, but received {len(vars_list)}."
                kernel_select_code = kernel_select_code + f"""
  kernel_layout = ParseLayout({vars_list[0].strip()});
"""

        if kernel['data_type'] is not None:
            if '>' in kernel['data_type']:
                vars_list = kernel['data_type'].split('>')
                assert len(
                    vars_list
                ) == 2, f"{api} api: The number of params to set data_type with '>' only allows 2, but received {len(vars_list)}."
                assert vars_list[0].strip() in attrs['names'] and attrs['attr_info'][vars_list[0].strip()][0] == 'DataType', \
                    f"{api} api: When use '>' to set kernel data_type, the first param should be a attribute with DataType type."
                kernel_select_code = kernel_select_code + f"""
  kernel_data_type = ParseDataTypeWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""

            else:
                vars_list = kernel['data_type'].split(',')
                assert len(
                    vars_list
442
                ) == 1, f"{api} api: The number of params to set data_type only allows 1, but received {len(vars_list)}."
443 444 445 446 447
                kernel_select_code = kernel_select_code + f"""
  kernel_data_type = ParseDataType({vars_list[0].strip()});
"""

        if len(input_names) == 0:
448
            assert attr_backend_count > 0 and attr_data_type_count > 0, \
449
                f"{api} api: When there is no input tensor, the args must have 'Place' and 'DataType'."
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465

        kernel_select_args = ""
        for input_name in input_names:
            kernel_select_args = kernel_select_args + input_name + ", "

        if len(kernel_select_args) > 2:
            kernel_select_args = kernel_select_args[:-2]

        kernel_select_code = kernel_key_item_init + kernel_select_code

        if len(input_names) > 0:
            kernel_select_code = kernel_select_code + f"""
  if (kernel_backend == Backend::UNDEFINED
        || kernel_layout == DataLayout::UNDEFINED
        || kernel_data_type == DataType::UNDEFINED ) {{
    auto kernel_key_set = ParseKernelKeyByInputArgs({kernel_select_args});
466
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
467 468 469 470 471 472 473 474 475 476 477 478 479
    if (kernel_backend == Backend::UNDEFINED) {{
      kernel_backend = kernel_key.backend();
    }}
    if (kernel_layout == DataLayout::UNDEFINED) {{
      kernel_layout = kernel_key.layout();
    }}
    if (kernel_data_type == DataType::UNDEFINED) {{
      kernel_data_type = kernel_key.dtype();
    }}
  }}"""

        return kernel_select_code

480
    def gene_infer_meta(self, kernel_output_names, code_indent) -> str:
481 482 483 484
        input_names = self.inputs['names']
        attr_names = self.attrs['names']
        infer_meta = self.infer_meta

485 486
        infer_meta_params = infer_meta['param'] if infer_meta[
            'param'] is not None else input_names + attr_names
487 488 489 490 491
        # generate meta tensors
        meta_tensor_code = ""
        param_code = ""
        for param in infer_meta_params:
            if param in input_names:
492 493 494 495 496
                if self.inputs['input_info'][param] == "const Tensor&":
                    param_code = param_code + "MakeMetaTensor(*" + PREFIX_TENSOR_NAME + param + "), "
                elif self.inputs['input_info'][
                        param] == "const std::vector<Tensor>&":
                    meta_tensor_code = meta_tensor_code + f"""
497
{code_indent}  auto {param}_meta_vec = MakeMetaTensor({PREFIX_TENSOR_NAME}{param});
498
{code_indent}  std::vector<const phi::MetaTensor*> {param}_metas({param}_meta_vec.size());
499 500 501 502
{code_indent}  for (size_t i = 0; i < {param}_meta_vec.size(); ++i) {{
{code_indent}    {param}_metas[i] = &{param}_meta_vec[i];
{code_indent}  }}
"""
503 504 505 506 507 508 509 510 511 512
                    param_code = param_code + param + "_metas, "
                elif self.inputs['input_info'][
                        param] == "const paddle::optional<std::vector<Tensor>>&":
                    meta_tensor_code = meta_tensor_code + f"""
{code_indent}  auto {param}_meta_vec = MakeMetaTensor({PREFIX_TENSOR_NAME}{param});
{code_indent}  paddle::optional<std::vector<const phi::MetaTensor*>> {param}_metas({param}_meta_vec.size());
{code_indent}  for (size_t i = 0; i < {param}_meta_vec.size(); ++i) {{
{code_indent}    {param}_metas->at(i) = &{param}_meta_vec[i];
{code_indent}  }}
"""
513 514
                    param_code = param_code + param + "_metas, "
                elif param in self.optional_vars:
515
                    param_code = param_code + "MakeMetaTensor(" + PREFIX_TENSOR_NAME + param + "), "
516
                else:
517 518 519
                    raise ValueError(
                        f"{self.api} : Param of infer_meta error : {self.inputs['input_info'][param]} type is not supported."
                    )
520 521 522 523 524 525 526 527 528
            elif param in attr_names:
                param_code = param_code + param + ", "
            elif isinstance(param, str):
                param_code = param_code + "\"" + param + "\", "
            elif isinstance(param, bool):
                param_code = param_code + str(param).lower() + ", "
            else:
                param_code = param_code + str(param) + ", "

529 530 531 532 533 534
        for i, out_name in enumerate(kernel_output_names):
            if self.outputs['types'][i] == 'std::vector<Tensor>':
                meta_tensor_code = meta_tensor_code + f"""
{code_indent}  auto {out_name}_{PREFIX_META_TENSOR_NAME}vec = MakeMetaTensor({out_name});
{code_indent}  std::vector<phi::MetaTensor*> {out_name}_metas({out_name}_{PREFIX_META_TENSOR_NAME}vec.size());
{code_indent}  for (size_t i = 0; i < {out_name}_{PREFIX_META_TENSOR_NAME}vec.size(); ++i) {{
535
{code_indent}    {out_name}_metas[i] = {out_name}[i] ? &{out_name}_{PREFIX_META_TENSOR_NAME}vec[i] : nullptr;
536 537 538 539 540 541 542
{code_indent}  }}"""

                param_code = param_code + out_name + '_metas, '
            else:
                meta_tensor_code = meta_tensor_code + code_indent + "  phi::MetaTensor " + out_name.replace(
                    'kernel_',
                    PREFIX_META_TENSOR_NAME) + "(" + out_name + ");\n"
543 544 545 546
                if len(kernel_output_names) == 1:
                    param_code = param_code + f"&{out_name.replace('kernel_', PREFIX_META_TENSOR_NAME)}, "
                else:
                    param_code = param_code + f"{out_name} ? &{out_name.replace('kernel_', PREFIX_META_TENSOR_NAME)} : nullptr, "
547

548 549
        param_code = param_code[:-2]
        return f"""{meta_tensor_code}
550
{code_indent}  phi::{infer_meta['func']}({param_code});
551 552
"""

553 554
    def get_kernel_args(self, kernel_tensor_type=None, code_indent=''):
        dense_input_trans_map = {
555 556
            'const Tensor&':
            'const phi::DenseTensor&',
557
            'const std::vector<Tensor>&':
558
            'const std::vector<const phi::DenseTensor*>&',
H
hong 已提交
559 560
            'const paddle::optional<Tensor&>':
            'paddle::optional<const phi::DenseTensor&>',
561 562
            'const paddle::optional<Tensor>&':
            'const paddle::optional<phi::DenseTensor>&',
563
            'const paddle::optional<std::vector<Tensor>>&':
564
            'const paddle::optional<std::vector<const phi::DenseTensor*>>&'
565
        }
566
        dense_out_trans_map = {
567 568
            'Tensor': 'phi::DenseTensor*',
            'std::vector<Tensor>': 'std::vector<phi::DenseTensor*>&'
569
        }
570 571 572 573 574 575 576
        sr_input_trans_map = {
            'const Tensor&':
            'const phi::SelectedRows&',
            'const paddle::optional<Tensor>&':
            'const paddle::optional<phi::SelectedRows>&'
        }
        sr_out_trans_map = {'Tensor': 'phi::SelectedRows*'}
577 578 579 580 581 582 583 584 585 586
        input_names = self.inputs['names']
        input_infos = self.inputs['input_info']
        kernel_args_type_list = ['const platform::DeviceContext&']

        attr_names = self.attrs['names']
        kernel_param = self.kernel['param']
        if kernel_param is None:
            kernel_param = input_names + attr_names

        input_tensor_code = ""
587
        input_name_tensor_map = collections.defaultdict(list)
588 589 590
        for i, input_name in enumerate(input_names):
            # set input code
            if input_name in kernel_param:
591 592 593 594 595 596 597 598 599 600
                # input is dense tensor
                if kernel_tensor_type is None or kernel_tensor_type[0][
                        kernel_param.index(input_name)] == 'dense':
                    trans_flag = "{}"
                    if input_name in self.data_transform['skip_transform']:
                        trans_flag = "{true}"
                    elif input_name in self.data_transform[
                            'support_trans_dtype']:
                        trans_flag = "{false, true}"
                    if input_name in self.optional_vars:
601 602
                        if self.inputs['input_info'][
                                input_name] == "const paddle::optional<std::vector<Tensor>>&":
603 604 605 606 607 608 609 610 611 612
                            if input_name in self.inplace_map.values():
                                input_name_tensor_map[input_name].append(
                                    (f"{PREFIX_TENSOR_NAME}{input_name}", True))
                                input_tensor_code = input_tensor_code + f"""
{code_indent}  paddle::optional<std::vector<const phi::DenseTensor*>> {PREFIX_TENSOR_NAME}{input_name} = TensorToConstDenseTensorPtr({input_name});"""
                            else:
                                input_name_tensor_map[input_name].append(
                                    (f"{PREFIX_TENSOR_NAME}{input_name}_vec",
                                     True))
                                input_tensor_code = input_tensor_code + f"""
613 614 615 616 617 618 619 620 621 622 623 624
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name}_vec = PrepareData({input_name}, kernel.InputAt({kernel_param.index(input_name)}), {trans_flag});
{code_indent}  paddle::optional<std::vector<const phi::DenseTensor*>> {PREFIX_TENSOR_NAME}{input_name};
{code_indent}  if ({PREFIX_TENSOR_NAME}{input_name}_vec){{
{code_indent}    {PREFIX_TENSOR_NAME}{input_name} = paddle::optional<std::vector<const phi::DenseTensor*>>({PREFIX_TENSOR_NAME}{input_name}_vec->size());
{code_indent}    for (size_t i = 0; i < {PREFIX_TENSOR_NAME}{input_name}_vec->size(); ++i) {{
{code_indent}      {PREFIX_TENSOR_NAME}{input_name}->at(i) = &{PREFIX_TENSOR_NAME}{input_name}_vec->at(i);
{code_indent}    }}
{code_indent}  }}"""
                        else:
                            input_name_tensor_map[input_name].append(
                                (f"{PREFIX_TENSOR_NAME}{input_name}", False))
                            input_tensor_code = input_tensor_code + f"""
625
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = PrepareData({input_name}, kernel.InputAt({kernel_param.index(input_name)}), {trans_flag});"""
626

627 628 629
                    else:
                        if self.inputs['input_info'][
                                input_name] == "const Tensor&":
630 631
                            input_name_tensor_map[input_name].append(
                                (f"{PREFIX_TENSOR_NAME}{input_name}", False))
632
                            input_tensor_code = input_tensor_code + f"""
633
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = PrepareData({input_name}, kernel.InputAt({kernel_param.index(input_name)}), {trans_flag});"""
634

635 636
                        elif self.inputs['input_info'][
                                input_name] == "const std::vector<Tensor>&":
637 638 639 640 641 642 643 644 645 646
                            if input_name in self.inplace_map.values():
                                input_name_tensor_map[input_name].append(
                                    (f"{PREFIX_TENSOR_NAME}{input_name}", True))
                                input_tensor_code = input_tensor_code + f"""
{code_indent}  std::vector<const phi::DenseTensor*> {PREFIX_TENSOR_NAME}{input_name} = TensorToConstDenseTensorPtr({input_name});"""
                            else:
                                input_name_tensor_map[input_name].append(
                                    (f"{PREFIX_TENSOR_NAME}{input_name}_vec",
                                     True))
                                input_tensor_code = input_tensor_code + f"""
647
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name}_vec = PrepareData({input_name}, kernel.InputAt({kernel_param.index(input_name)}), {trans_flag});
648 649 650 651 652
{code_indent}  std::vector<const phi::DenseTensor*> {PREFIX_TENSOR_NAME}{input_name}({PREFIX_TENSOR_NAME}{input_name}_vec->size());
{code_indent}  for (size_t i = 0; i < {PREFIX_TENSOR_NAME}{input_name}.size(); ++i) {{
{code_indent}    {PREFIX_TENSOR_NAME}{input_name}[i] = &{PREFIX_TENSOR_NAME}{input_name}_vec->at(i);
{code_indent}  }}"""

653 654 655 656
                        else:
                            # do nothing
                            pass
                else:  # input is selected_rows
657 658
                    input_name_tensor_map[input_name].append(
                        (f"{PREFIX_TENSOR_NAME}{input_name}", False))
659
                    input_tensor_code = input_tensor_code + f"""
660 661
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = TensorToSelectedRows({input_name});
"""
662 663 664 665 666
            else:
                if input_name in self.infer_meta['param']:
                    if input_name in self.optional_vars:
                        input_tensor_code = input_tensor_code + f"""
{code_indent}  paddle::optional<phi::TensorBase> {PREFIX_TENSOR_NAME}{input_name} = {input_name} ? paddle::optional<phi::TensorBase>(*{input_name}->impl()) : paddle::none;"""
667

668
                    else:
669 670 671 672 673 674 675
                        if self.inputs['input_info'][
                                input_name] == "const std::vector<Tensor>&":
                            input_tensor_code = input_tensor_code + f"""
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name}_uq_ptr = TensorToDenseTensor({input_name});
{code_indent}  const auto& {PREFIX_TENSOR_NAME}{input_name} = *{PREFIX_TENSOR_NAME}{input_name}_uq_ptr;"""
                        else:
                            input_tensor_code = input_tensor_code + f"""
676
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = {input_name}.impl();"""
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
        input_tensor_code = input_tensor_code + f"""
{code_indent}  if(platform::RecordOpInfoSupplement::IsEnabled()){{"""
        single_tensor_names = []
        list_tensor_names = []
        for input_name, input_tensors in input_name_tensor_map.items():
            has_vector_tensor = False
            for input_tensor, is_vector in input_tensors:
                if is_vector is True:
                    has_vector_tensor = True
            if has_vector_tensor is False:
                single_tensor_names.append(input_name)
            else:
                list_tensor_names.append(input_name)
        if not single_tensor_names:
            input_tensor_code = input_tensor_code + f"""
{code_indent}     std::vector<std::pair<const char*, std::vector<phi::DDim>>> input_shapes;"""
        else:
            input_tensor_code = input_tensor_code + f"""
{code_indent}     std::vector<std::pair<const char*, std::vector<phi::DDim>>> input_shapes{{"""
            for input_name in single_tensor_names[:-1]:
                input_tensors = input_name_tensor_map[input_name]
                input_tensor_code = input_tensor_code + f"""            
{code_indent}     {{"{input_name}", {{"""
                for input_tensor, _ in input_tensors[:-1]:
                    input_tensor_code = input_tensor_code + f"""            
{code_indent}     (*{input_tensor}).dims(),"""
                input_tensor_code = input_tensor_code + f"""            
{code_indent}     (*{input_tensors[-1][0]}).dims()}}}},"""
            input_tensors = input_name_tensor_map[single_tensor_names[-1]]
            input_tensor_code = input_tensor_code + f"""            
{code_indent}     {{"{single_tensor_names[-1]}", {{"""
            for input_tensor, _ in input_tensors[:-1]:
                input_tensor_code = input_tensor_code + f"""            
{code_indent}     (*{input_tensor}).dims(),"""
            input_tensor_code = input_tensor_code + f"""            
{code_indent}     (*{input_tensors[-1][0]}).dims()}}}}}};"""
        if list_tensor_names:
            input_tensor_code = input_tensor_code + f"""
{code_indent}     std::vector<phi::DDim> ddims_vec;"""
        for input_name in list_tensor_names:
            input_tensor_code = input_tensor_code + f"""
{code_indent}     ddims_vec.clear();"""
            for input_tensor, is_vector in input_name_tensor_map[input_name]:
                if is_vector:
721 722 723 724
                    input_tensor_truncate = input_tensor[:-4]
                    if input_name in self.inplace_map.values():
                        input_tensor_truncate = input_tensor

725 726
                    if input_name in self.optional_vars:
                        input_tensor_code = input_tensor_code + f"""
727 728 729 730
{code_indent}     if ({input_tensor_truncate}){{
{code_indent}       ddims_vec.reserve({input_tensor_truncate}->size());
{code_indent}       for (size_t i = 0; i < {input_tensor_truncate}->size(); ++i) {{
{code_indent}         ddims_vec.emplace_back((*{input_tensor_truncate}->at(i)).dims());
731 732 733 734
{code_indent}       }}
{code_indent}     }}"""
                    else:
                        input_tensor_code = input_tensor_code + f"""
735 736 737
{code_indent}     ddims_vec.reserve({input_tensor_truncate}.size());
{code_indent}     for (size_t i = 0; i < {input_tensor_truncate}.size(); ++i) {{
{code_indent}       ddims_vec.emplace_back((*{input_tensor_truncate}[i]).dims());
738 739 740 741 742 743 744 745 746 747 748
{code_indent}     }}"""
                else:
                    input_tensor_code = input_tensor_code + f"""  
                  ddims_vec.emplace_back((*{input_tensor}).dims());
{code_indent}     """
            input_tensor_code = input_tensor_code + f"""
{code_indent}     input_shapes.emplace_back("{input_name}", ddims_vec);"""

        input_tensor_code = input_tensor_code + f"""
{code_indent}     platform::RecordOpInfoSupplement("{self.api}", input_shapes);
{code_indent}  }}"""
749
        kernel_args = ["*dev_ctx"]
750 751
        for param in kernel_param:
            if param in input_names:
752
                if param in self.optional_vars:
753
                    kernel_args.append(PREFIX_TENSOR_NAME + param)
754
                else:
755
                    if self.inputs['input_info'][param] == "const Tensor&":
756
                        kernel_args.append("*" + PREFIX_TENSOR_NAME + param)
757
                    elif self.inputs['input_info'][
758
                            param] == "const std::vector<Tensor>&":
759
                        kernel_args.append(PREFIX_TENSOR_NAME + param)
760 761 762
                    else:
                        # do nothing
                        pass
763 764 765
                # input is dense tensor
                if kernel_tensor_type is None or kernel_tensor_type[0][
                        kernel_param.index(param)] == 'dense':
766
                    kernel_args_type_list.append(
767 768 769 770
                        dense_input_trans_map[input_infos[param]])
                else:  # input is selected_rows
                    kernel_args_type_list.append(
                        sr_input_trans_map[input_infos[param]])
771 772
            elif param in attr_names:
                # set attr for kernel_context
773 774 775
                if 'IntArray' in self.attrs['attr_info'][param][0]:
                    kernel_args_type_list.append('const phi::IntArray&')
                    param = 'phi::IntArray(' + param + ')'
776 777 778 779
                elif 'vector<phi::Scalar>' in self.attrs['attr_info'][param][0]:
                    kernel_args_type_list.append(
                        'const std::vector<phi::Scalar>&')
                    param = param
780
                elif 'Scalar' in self.attrs['attr_info'][param][0]:
781 782
                    kernel_args_type_list.append('const phi::Scalar&')
                    param = 'phi::Scalar(' + param + ')'
783
                else:
784 785
                    kernel_args_type_list.append(
                        self.attrs['attr_info'][param][0])
786
                kernel_args.append(param)
787
            elif isinstance(param, bool):
788
                kernel_args.append(str(param).lower())
789
            else:
790
                kernel_args.append(str(param))
791

792 793 794 795 796 797
        for i, out_type in enumerate(self.outputs['types']):
            # output is dense tensor
            if kernel_tensor_type is None or kernel_tensor_type[1][i] == 'dense':
                kernel_args_type_list.append(dense_out_trans_map[out_type])
            else:  # output is selected_rows
                kernel_args_type_list.append(sr_out_trans_map[out_type])
798 799 800

        kernel_signature = "void(*)(" + ", ".join(kernel_args_type_list) + ")"

801
        return input_tensor_code, ", ".join(kernel_args), kernel_signature
802

803 804
    # Override by child class
    def gene_return_code(self):
805
        return "return api_output;"
806

807
    # Override by child class
808
    def gene_output(self,
809 810 811
                    out_dtype_list,
                    out_tensor_type_list=None,
                    code_indent='',
812
                    inplace_flag=False):
813 814
        return None, None, None

815 816
    def gen_kernel_code(self, kernel_name, code_indent, inplace_flag=False):
        kernel_dispatch = self.kernel['dispatch'][kernel_name]
817
        input_tensors, kernel_args, kernel_signature = self.get_kernel_args(
818 819
            kernel_dispatch, code_indent)
        out_tensor_type_list = kernel_dispatch[1] if kernel_dispatch else None
820
        outputs_args, kernel_output_names, output_create = self.gene_output(
821 822
            self.outputs['types'], out_tensor_type_list, code_indent,
            inplace_flag)
823 824 825 826 827
        fallback_kernel_output_trans = ""
        for kernel_out in outputs_args:
            fallback_kernel_output_trans += (f"""
{code_indent}    TransDataBackend({kernel_out}, kernel_backend, {kernel_out});"""
                                             )
Z
zyfncg 已提交
828
        cudnn_args = '' if self.kernel[
829
            'use_gpudnn'] == 'false' else ', ' + self.kernel['use_gpudnn']
830
        return f"""
F
From00 已提交
831
{code_indent}  VLOG(6) << "{self.api} API kernel key: [" << kernel_backend << ", " << kernel_layout << ", "<< kernel_data_type << "]";
832
{code_indent}  auto kernel_result = phi::KernelFactory::Instance().SelectKernelOrThrowError(
833
{code_indent}      "{kernel_name}", {{kernel_backend, kernel_layout, kernel_data_type}}{cudnn_args});
834
{code_indent}  const auto& kernel = kernel_result.kernel;
835
{code_indent}  VLOG(6) << "{kernel_name} kernel: " << kernel;
836
{code_indent}  auto* dev_ctx = GetDeviceContextByBackend(kernel_result.has_fallback_cpu ? Backend::CPU : kernel_backend);
837 838
{input_tensors}
{output_create}
839 840 841 842
{code_indent}  paddle::platform::RecordEvent *infer_shape_record_event = nullptr;
{code_indent}  if(paddle::platform::RecordEvent::IsEnabled()){{
{code_indent}    infer_shape_record_event = new paddle::platform::RecordEvent(\"{self.api} infer_meta\", paddle::platform::TracerEventType::OperatorInner, 1);
{code_indent}  }}
843
{self.gene_infer_meta(kernel_output_names, code_indent)}
844 845 846
{code_indent}  if(infer_shape_record_event != nullptr){{
{code_indent}    delete infer_shape_record_event;
{code_indent}  }}
847 848
{code_indent}  using kernel_signature = {kernel_signature};
{code_indent}  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
849 850 851 852
{code_indent}  paddle::platform::RecordEvent* kernel_record_event = nullptr;
{code_indent}  if(paddle::platform::RecordEvent::IsEnabled()){{
{code_indent}    kernel_record_event = new paddle::platform::RecordEvent(\"{self.api} compute\", paddle::platform::TracerEventType::OperatorInner, 1);
{code_indent}  }}
853
{code_indent}    (*kernel_fn)({kernel_args}, {", ".join(outputs_args)});
854 855
{code_indent}  if(kernel_record_event != nullptr){{
{code_indent}    delete kernel_record_event;
856 857 858
{code_indent}  }}
{code_indent}  if (kernel_result.has_fallback_cpu) {{
{fallback_kernel_output_trans}
859
{code_indent}  }}
860

861
{code_indent}  {self.gene_return_code()}"""
862

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
    def get_condition_code(self, kernel_name):
        assert self.kernel['dispatch'][kernel_name], \
                f"{self.api} api: the tensor type of inputs and outputs for kernel isn't set, see also 'kernel:func' of 'scale' in api.yaml."
        input_types = self.kernel['dispatch'][kernel_name][0]
        condition_list = []
        for i, in_type in enumerate(input_types):
            if in_type == "dense":
                if self.inputs['names'][i] in self.optional_vars:
                    condition_list.append(
                        f"(!{self.inputs['names'][i]} || {self.inputs['names'][i]}->is_dense_tensor())"
                    )
                else:
                    condition_list.append(
                        f"{self.inputs['names'][i]}.is_dense_tensor()")
            else:
                if self.inputs['names'][i] in self.optional_vars:
                    condition_list.append(
                        f"(!{self.inputs['names'][i]} || {self.inputs['names'][i]}->is_selected_rows())"
                    )
                else:
                    condition_list.append(
                        f"{self.inputs['names'][i]}.is_selected_rows()")
        return " && ".join(condition_list)
886

887 888 889 890 891 892
    def gene_dispatch_code(self, kernel_name, inplace_flag=False):
        return f"""
  if ({self.get_condition_code(kernel_name)}) {{
{self.gen_kernel_code(kernel_name, '  ', inplace_flag)}
  }}
"""
893

894
    def gene_base_api_code(self, inplace_flag=False):
895 896 897
        api_func_name = self.get_api_func_name()
        if inplace_flag and api_func_name[-1] != '_':
            api_func_name += '_'
898
        api_code = f"""
899
PADDLE_API {self.get_return_type(inplace_flag)} {api_func_name}({self.get_define_args(inplace_flag)}) {{
900
{self.gene_kernel_select()}
901
"""
902

903 904 905 906 907
        if len(self.kernel['func']) > 1:
            kernel_dispatch_code = ''
            for kernel_name in self.kernel['func']:
                kernel_dispatch_code += self.gene_dispatch_code(
                    kernel_name, inplace_flag)
908
            return api_code + f"""
909 910 911
{kernel_dispatch_code}
  PADDLE_THROW(phi::errors::Unimplemented(
          "The kernel of ({self.api}) for input tensors is unimplemented, please check the type of input tensors."));
912
}}
913
"""
914
        else:
915 916
            return api_code + self.gen_kernel_code(self.kernel['func'][0], '',
                                                   inplace_flag) + """
917
}
918 919
"""

920 921
    def gene_invoke_code(self, invoke_code, params_code):
        return f"""
922
PADDLE_API {self.get_return_type()} {self.api}({params_code}) {{
923 924 925
  return {invoke_code};
}}"""

926 927 928
    def gene_api_code(self):
        if self.is_base_api:
            api_code = self.gene_base_api_code()
929
            if len(self.inplace_map) > 0:
Z
zyfncg 已提交
930 931
                if self.api[-1] == '_':
                    api_code = ""
932 933 934
                api_code = api_code + self.gene_base_api_code(inplace_flag=True)
            return api_code

935
        else:
936 937
            invoke_func_name = self.invoke.split('(')[0].strip()
            if invoke_func_name in self.attrs['names']:
938
                # Adjust the param whose name is same with api invoked.
939
                pattern = r'\W' + invoke_func_name + '[^A-Za-z0-9_(]'
940 941 942 943 944 945 946

                def adjust_name(matched):
                    matched_str = matched.group()
                    return matched_str[0:-1] + '_val' + matched_str[-1]

                invoke_code = re.sub(pattern, adjust_name, self.invoke)
                params_code = re.sub(pattern, adjust_name,
947
                                     self.get_define_args())
948 949
            else:
                invoke_code = self.invoke
950 951
                params_code = self.get_define_args()
            return self.gene_invoke_code(invoke_code, params_code)