mkldnn_helper.h 16.2 KB
Newer Older
1
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.
T
tensor-tang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

16
#include <algorithm>
J
Jacek Czaja 已提交
17
#include <iostream>
P
Physher 已提交
18
#include <memory>
J
Jacek Czaja 已提交
19
#include <sstream>
G
gongweibao 已提交
20
#include <string>
21
#include <utility>
22
#include <vector>
23
#include "mkldnn.hpp"
24
#include "paddle/fluid/framework/operator.h"
M
mozga-intel 已提交
25
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
26
namespace paddle {
27
#ifdef PADDLE_WITH_MKLDNN
A
Adam 已提交
28
using MKLDNNMemoryFormat = mkldnn::memory::format_tag;
29
#endif
T
tensor-tang 已提交
30 31 32 33 34
namespace platform {

using MKLDNNStream = mkldnn::stream;
using MKLDNNEngine = mkldnn::engine;
using MKLDNNMemory = mkldnn::memory;
35
using MKLDNNMemoryDescriptor = mkldnn::memory::desc;
T
tensor-tang 已提交
36 37 38
using MKLDNNPrimitive = mkldnn::primitive;
using MKLDNNPrimitiveDesc = mkldnn::handle<mkldnn_primitive_desc_t>;

39 40 41 42 43
typedef std::unique_ptr<MKLDNNStream> MKLDNNStreamPtr;
typedef std::unique_ptr<MKLDNNEngine> MKLDNNEnginePtr;
typedef std::unique_ptr<MKLDNNMemory> MKLDNNMemoryPtr;
typedef std::unique_ptr<MKLDNNPrimitive> MKLDNNPrimitivePtr;
typedef std::unique_ptr<MKLDNNPrimitiveDesc> MKLDNNPrimitiveDescPtr;
T
tensor-tang 已提交
44

45 46 47 48 49
template <typename Type>
void* to_void_cast(const Type* t) {
  return static_cast<void*>(const_cast<Type*>(t));
}

K
Krzysztof Binias 已提交
50 51 52 53 54
template <typename Type>
void* to_void_reinterpret_cast(const Type* t) {
  return reinterpret_cast<void*>(const_cast<Type*>(t));
}

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
template <class Type>
using tf_desc = typename Type::desc;

template <class Type>
using tf_pd = typename Type::primitive_desc;

template <typename Type, typename Engine, typename... Args>
std::shared_ptr<tf_pd<Type>> MKLDNNFwdPrimitiveDesc(const Engine& e,
                                                    Args&&... args) {
  auto desc = tf_desc<Type>(mkldnn::prop_kind::forward, (args)...);
  auto pd = new tf_pd<Type>(desc, e);
  return std::shared_ptr<tf_pd<Type>>(pd);
}

template <typename Type, typename Engine, typename Primitive, typename... Args>
tf_pd<Type> MKLDNNBwdPrimitiveDesc(const Engine& e, const Primitive& p,
                                   Args&&... args) {
  auto desc = tf_desc<Type>(args...);
  return tf_pd<Type>(desc, e, p);
}

76 77 78
inline void MatchShapeToLayout(framework::Tensor* tensor_in,
                               framework::DataLayout from,
                               framework::DataLayout to) {
79 80 81
  // In these data layouts, channel dimension is either on 2nd position: nChw or
  // at last nhwC, so for dim==2 these layouts are the same and nothing should
  // be done. Similarly for dim==1 when you have just one possible combination.
82 83 84 85
  if (tensor_in->dims().size() < 3) {
    return;
  }

J
Jacek Czaja 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
  auto print_dims = [](const std::vector<int>& dims) {
    std::ostringstream oss;

    if (!dims.empty()) {
      oss << "[";
      // Convert all but the last element to avoid a trailing ","
      std::copy(dims.begin(), dims.end() - 1,
                std::ostream_iterator<int>(oss, ","));

      // Now add the last element with no delimiter
      oss << dims.back() << "]";
    }

    return oss.str();
  };

102 103 104 105 106 107
  switch (from) {
    case framework::DataLayout::kMKLDNN:
      if (to == framework::DataLayout::kNHWC) {
        auto dims = framework::vectorize<int>(tensor_in->dims());
        std::rotate(dims.begin() + 1, dims.begin() + 2, dims.end());
        tensor_in->Resize(framework::make_ddim(dims));
J
Jacek Czaja 已提交
108 109
        VLOG(3) << "Rotating Shape from: kMKLDNN to: kNHWC output_shape"
                << print_dims(dims);
110 111 112 113 114 115 116
      }
      break;
    case framework::DataLayout::kNHWC:
      if (to == framework::DataLayout::kMKLDNN) {
        auto dims = framework::vectorize<int>(tensor_in->dims());
        std::rotate(dims.begin() + 1, dims.end() - 1, dims.end());
        tensor_in->Resize(framework::make_ddim(dims));
J
Jacek Czaja 已提交
117 118
        VLOG(3) << "Rotating Shape from: kNHWC to: kMKLDNN output_shape"
                << print_dims(dims);
119 120 121 122 123 124 125
      }
      break;
    default:
      break;
  }
}

126 127 128 129 130
struct mkldnn_dummy_primitive {
  struct primitive_desc {};
  struct desc {};
};

A
Adam 已提交
131
inline mkldnn::memory::desc MKLDNNMemDesc(const std::vector<int64_t>& dims,
132
                                          mkldnn::memory::data_type data_type,
133
                                          MKLDNNMemoryFormat format) {
A
Adam 已提交
134
  return mkldnn::memory::desc({dims}, data_type, format);
135 136 137 138 139 140 141
}

inline bool CanMKLDNNBeUsed(const framework::ExecutionContext& ctx) {
  bool use_mkldnn = ctx.Attr<bool>("use_mkldnn");
  return use_mkldnn && platform::is_cpu_place(ctx.GetPlace());
}

142 143 144 145 146 147 148 149 150 151 152 153
inline void ClearMKLDNNCache(const platform::Place& place) {
  // Clear mkl-dnn cache,
  if (platform::is_cpu_place(place)) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    platform::MKLDNNDeviceContext* dev_ctx =
        (platform::MKLDNNDeviceContext*)pool.Get(place);
    dev_ctx->ResetBlobMap();
    platform::MKLDNNDeviceContext::tls().set_cur_paddle_data_layout(
        paddle::framework::DataLayout::kNCHW);
  }
}

154 155 156 157 158 159 160 161 162 163
inline void DontClearMKLDNNCache(const platform::Place& place) {
  // Clear mkl-dnn cache,
  if (platform::is_cpu_place(place)) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    platform::MKLDNNDeviceContext* dev_ctx =
        (platform::MKLDNNDeviceContext*)pool.Get(place);
    dev_ctx->BlockNextCacheClearing();
  }
}

164 165
template <typename Type>
mkldnn::memory::data_type MKLDNNGetDataType() {
A
Adam 已提交
166
  return mkldnn::memory::data_type::undef;
167 168 169 170
}

template <>
inline mkldnn::memory::data_type MKLDNNGetDataType<float>() {
171 172 173 174 175
  return mkldnn::memory::data_type::f32;
}
template <>
inline mkldnn::memory::data_type MKLDNNGetDataType<int32_t>() {
  return mkldnn::memory::data_type::s32;
176
}
P
Physher 已提交
177 178
template <>
inline mkldnn::memory::data_type MKLDNNGetDataType<int8_t>() {
179
  return mkldnn::memory::data_type::s8;
P
Physher 已提交
180 181 182
}
template <>
inline mkldnn::memory::data_type MKLDNNGetDataType<uint8_t>() {
183
  return mkldnn::memory::data_type::u8;
P
Physher 已提交
184 185
}

186 187 188 189 190 191
template <>
inline mkldnn::memory::data_type
MKLDNNGetDataType<paddle::platform::bfloat16>() {
  return mkldnn::memory::data_type::bf16;
}

A
Adam 已提交
192 193
inline void Reorder(mkldnn::memory src, mkldnn::memory dst,
                    const mkldnn::engine& engine) {
M
mozga-intel 已提交
194
  auto reorder_prim = mkldnn::reorder(src, dst);
A
Adam 已提交
195 196 197
  mkldnn::stream astream(engine);
  reorder_prim.execute(astream, src, dst);
  astream.wait();
M
mozga-intel 已提交
198 199
}

A
Adam 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
inline mkldnn::memory::format_tag GetMKLDNNFormat(
    mkldnn::memory::desc mem_desc) {
  auto ndims = mem_desc.data.ndims;
  auto strides = mem_desc.data.format_desc.blocking.strides;
  auto inner_nblks = mem_desc.data.format_desc.blocking.inner_nblks;
  auto inner_blks = mem_desc.data.format_desc.blocking.inner_blks;
  auto inner_idxs = mem_desc.data.format_desc.blocking.inner_idxs;

  if (ndims == 1) {
    return mkldnn::memory::format_tag::x;
  } else if (ndims == 2) {
    if (inner_nblks == 0) {
      if (strides[0] >= strides[1]) {
        return mkldnn::memory::format_tag::nc;
      } else {
        return mkldnn::memory::format_tag::cn;
      }
    }
  } else if (ndims == 3) {
    if (inner_nblks == 0) {
      if (strides[0] >= strides[1] && strides[1] >= strides[2]) {
        return mkldnn::memory::format_tag::ncw;
A
Adam 已提交
222 223
      } else if (strides[1] >= strides[0] && strides[0] >= strides[2]) {
        return mkldnn::memory::format_tag::ntc;
A
Adam 已提交
224 225 226 227 228 229 230 231 232
      } else {
        return mkldnn::memory::format_tag::nwc;
      }
    }
  } else if (ndims == 4) {
    if (inner_nblks == 0) {
      if (strides[0] >= strides[1] && strides[1] >= strides[2] &&
          strides[2] >= strides[3]) {
        return mkldnn::memory::format_tag::nchw;
233 234 235
      } else if (strides[2] >= strides[3] && strides[3] >= strides[1] &&
                 strides[1] >= strides[0]) {
        return mkldnn::memory::format_tag::cdba;
A
Adam 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
      } else {
        return mkldnn::memory::format_tag::nhwc;
      }
    } else if (inner_nblks == 1) {
      if (inner_blks[0] == 16 && inner_idxs[0] == 1) {
        return mkldnn::memory::format_tag::nChw16c;
      } else if (inner_blks[0] == 8 && inner_idxs[0] == 1) {
        return mkldnn::memory::format_tag::nChw8c;
      } else if (inner_blks[0] == 8 && inner_idxs[0] == 0) {
        if (strides[0] >= strides[2] && strides[2] >= strides[3] &&
            strides[3] >= strides[1]) {
          return mkldnn::memory::format_tag::Acdb8a;
        }
      } else if (inner_blks[0] == 4 && inner_idxs[0] == 1) {
        return mkldnn::memory::format_tag::nChw4c;
      } else if (inner_blks[0] == 16 && inner_idxs[0] == 0) {
        if (strides[0] >= strides[2] && strides[2] >= strides[3] &&
            strides[3] >= strides[1]) {
          return mkldnn::memory::format_tag::Acdb16a;
        }
      }
    } else if (inner_nblks == 2) {
      if (inner_blks[0] == 16 && inner_blks[1] == 16) {
        if (inner_idxs[0] == 1 && inner_idxs[1] == 0) {
          return mkldnn::memory::format_tag::OIhw16i16o;
        }
      } else if (inner_blks[0] == 8 && inner_blks[1] == 8) {
        if (inner_idxs[0] == 1 && inner_idxs[1] == 0) {
          return mkldnn::memory::format_tag::OIhw8i8o;
        }
      }
    }
  } else if (ndims == 5) {
    if (inner_nblks == 0) {
      if (strides[0] >= strides[1] && strides[1] >= strides[2] &&
          strides[2] >= strides[3] && strides[3] >= strides[4]) {
        return mkldnn::memory::format_tag::ncdhw;
      } else {
        return mkldnn::memory::format_tag::ndhwc;
      }
    } else if (inner_nblks == 1) {
      if (inner_blks[0] == 8 && inner_idxs[0] == 0) {
        if (strides[0] >= strides[2] && strides[2] >= strides[3] &&
            strides[3] >= strides[4] && strides[4] >= strides[1]) {
          return mkldnn::memory::format_tag::Acdeb8a;
        }
      } else if (inner_blks[0] == 8 && inner_idxs[0] == 1) {
        if (strides[0] >= strides[1] && strides[1] >= strides[2] &&
            strides[2] >= strides[3] && strides[3] >= strides[4]) {
          return mkldnn::memory::format_tag::aBcde8b;
        }
      } else if (inner_blks[0] == 16 && inner_idxs[0] == 0) {
        if (strides[0] >= strides[2] && strides[2] >= strides[3] &&
            strides[3] >= strides[4] && strides[4] >= strides[1]) {
          return mkldnn::memory::format_tag::Acdeb16a;
        }
      } else if (inner_blks[0] == 16 && inner_idxs[0] == 1) {
        if (strides[0] >= strides[1] && strides[1] >= strides[2] &&
            strides[2] >= strides[3] && strides[3] >= strides[4]) {
          return mkldnn::memory::format_tag::aBcde16b;
        }
      }
    }
  } else if (ndims == 6) {
    if (inner_nblks == 0) {
      if (strides[0] >= strides[1] && strides[1] >= strides[2] &&
          strides[2] >= strides[3] && strides[3] >= strides[4] &&
          strides[4] >= strides[5]) {
        return mkldnn::memory::format_tag::abcdef;
      }
    }
  }
  // DEBUG CODE - KEEP UNTILL TENSOR.MEMORY_DESC IMPLEMENTED
  // std::cout<<"@@@@@@@@@@ UNDEFINED FORMAT @@@@@@@@@@@@@@@@@@@"<<std::endl;
  // std::cout<<"NDIMS: "<<ndims<<std::endl;
  // std::cout<<"INNER_NBLKS: "<<inner_nblks<<std::endl;
  // for (int i=0;i<ndims;++i) {
  //   std::cout<<"STRIDE["<<i<<"]: "<<strides[i]<<std::endl;
  // }
  // for (int i=0;i<inner_nblks;++i) {
  //   std::cout<<"INNER_BLKS["<<i<<"]: "<<inner_blks[i]<<std::endl;
  // }
  // for (int i=0;i<inner_nblks;++i) {
  //   std::cout<<"INNER_IDXS["<<i<<"]: "<<inner_idxs[i]<<std::endl;
  // }
  return mkldnn::memory::format_tag::undef;
M
mozga-intel 已提交
322 323
}

A
Adam 已提交
324 325 326
inline mkldnn::memory::format_tag GetMKLDNNFormat(const mkldnn::memory memory) {
  auto mem_desc = memory.get_desc();
  return GetMKLDNNFormat(mem_desc);
327 328
}

329 330
inline MKLDNNMemoryFormat MKLDNNFormatForSize(size_t dims_size,
                                              MKLDNNMemoryFormat data_format) {
331
  if (dims_size == 1) {
332
    return MKLDNNMemoryFormat::x;
333
  } else if (dims_size == 2) {
334
    return MKLDNNMemoryFormat::nc;
335
  } else if (dims_size == 3) {
336 337 338 339
    if (data_format == MKLDNNMemoryFormat::nchw) {
      return MKLDNNMemoryFormat::ncw;
    } else if (data_format == MKLDNNMemoryFormat::nhwc) {
      return MKLDNNMemoryFormat::nwc;
340
    }
341
  } else if (dims_size == 4) {
342 343
    if (data_format == MKLDNNMemoryFormat::goihw) {
      return MKLDNNMemoryFormat::oihw;
344
    }
345
  } else if (dims_size == 5) {
346 347
    if (data_format == MKLDNNMemoryFormat::goidhw) {
      return MKLDNNMemoryFormat::oidhw;
348
    }
349 350 351 352
    if (data_format == MKLDNNMemoryFormat::nchw) {
      return MKLDNNMemoryFormat::ncdhw;
    } else if (data_format == MKLDNNMemoryFormat::nhwc) {
      return MKLDNNMemoryFormat::ndhwc;
353
    }
354 355 356 357
  }
  return data_format;
}

358
inline MKLDNNMemoryFormat data_format_to_memory_format(
359 360 361
    const std::string& data_format) {
  switch (framework::StringToDataLayout(data_format)) {
    case framework::DataLayout::kNHWC:
362
      return MKLDNNMemoryFormat::nhwc;
363
    case framework::DataLayout::kNCHW:
364
      return MKLDNNMemoryFormat::nchw;
365
    default:
366
      return MKLDNNMemoryFormat::any;
367 368 369
  }
}

370
inline MKLDNNMemoryFormat StringToMKLDNNFormat(std::string* format) {
371 372 373
  std::transform(format->begin(), format->end(), format->begin(), ::tolower);

  if (!format->compare("nchw")) {
374
    return MKLDNNMemoryFormat::nchw;
375
  } else if (!format->compare("nchw16c")) {
376
    return MKLDNNMemoryFormat::nChw16c;
377
  } else if (!format->compare("nchw8c")) {
378
    return MKLDNNMemoryFormat::nChw8c;
379
  } else if (!format->compare("nhwc")) {
380
    return MKLDNNMemoryFormat::nhwc;
381
  } else {
382
    return MKLDNNMemoryFormat::any;
383 384 385
  }
}

A
Adam 已提交
386 387 388 389 390
inline std::string ThreadIDasStr(void) {
  return std::to_string(
      std::hash<std::thread::id>()(std::this_thread::get_id()));
}

391 392 393
template <typename T>
inline void AppendKey(std::string* key, const T& num) {
  key->append(std::to_string(num));
A
Adam 已提交
394 395
}

A
Adam 已提交
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
template <>
inline void AppendKey(std::string* key,
                      const mkldnn::memory::format_tag& format) {
  key->append(std::to_string(static_cast<int>(format)));
}

template <>
inline void AppendKey(std::string* key,
                      const mkldnn::memory::data_type& data_type) {
  key->append(std::to_string(static_cast<int>(data_type)));
}

template <>
inline void AppendKey(std::string* key, const mkldnn::algorithm& algorithm) {
  key->append(std::to_string(static_cast<int>(algorithm)));
}

template <>
inline void AppendKey(std::string* key,
                      const mkldnn::normalization_flags& flags) {
  key->append(std::to_string(static_cast<int>(flags)));
}

419 420
inline void AppendKey(std::string* key, const std::string& str) {
  key->append(str);
A
Adam 已提交
421 422
}

423
inline void AppendKey(std::string* key, const char* str) { key->append(str); }
A
Adam 已提交
424

A
Adam 已提交
425 426
template <typename T>
inline void AppendKey(std::string* key, const std::vector<T>& dims) {
427
  for (size_t i = 0; i < dims.size(); i++) {
A
Adam 已提交
428 429 430 431
    AppendKey(key, std::to_string(dims[i]));
  }
}

432 433 434
template <typename... ArgTypes>
inline std::string CreateKey(ArgTypes&&... args) {
  std::string key;
435
  key.reserve(64);
436
  using expand_type = int[];
437
  expand_type{0, (AppendKey(&key, std::forward<ArgTypes>(args)), 0)...};
438 439 440
  return key;
}

A
Adam 已提交
441 442
inline std::vector<std::vector<int64_t>> ToMkldnnPadding(
    const std::vector<int64_t>& paddings) {
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
  if (paddings.size() == 6) {
    int padding_front = paddings[0];
    int padding_back = paddings[1];
    int padding_top = paddings[2];
    int padding_bottom = paddings[3];
    int padding_left = paddings[4];
    int padding_right = paddings[5];

    return {{padding_front, padding_top, padding_left},
            {padding_back, padding_bottom, padding_right}};
  } else {
    int padding_top = paddings[0];
    int padding_bottom = paddings[1];
    int padding_left = paddings[2];
    int padding_right = paddings[3];

    return {{padding_top, padding_left}, {padding_bottom, padding_right}};
  }
}

463 464 465 466 467
inline bool HasOpINT8DataType(const paddle::framework::OpDesc* op) {
  return (op->GetAttrIfExists<std::string>("mkldnn_data_type") == "int8" ||
          op->GetAttrIfExists<bool>("use_quantizer"));
}

468 469 470 471 472 473 474
inline bool HasOpBFLOAT16DataType(const paddle::framework::OpDesc* op) {
  return op->GetAttrIfExists<std::string>("mkldnn_data_type") == "bfloat16";
}

inline bool HasOpFLOAT32DataType(const paddle::framework::OpDesc* op) {
  return op->GetAttrIfExists<std::string>("mkldnn_data_type") == "float32";
}
A
Adam 已提交
475 476
enum class RNNReorderType { PP_NTC, PP_TNC, NTC_PP, TNC_PP };

T
tensor-tang 已提交
477 478
}  // namespace platform
}  // namespace paddle