gaussian_random_op.cu 5.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
Q
qijun 已提交
16 17
#include <thrust/random.h>
#include <thrust/transform.h>
Y
yaoxuefeng 已提交
18
#include "paddle/fluid/framework/generator.h"
Y
Yi Wang 已提交
19 20
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
21
#include "paddle/fluid/operators/fill_constant_op.h"
Q
qijun 已提交
22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {

template <typename T>
struct GaussianGenerator {
  T mean_, std_;
  unsigned int seed_;
Y
yaoxuefeng 已提交
30
  unsigned int offset_ = 0;
Q
qijun 已提交
31 32 33 34

  __host__ __device__ GaussianGenerator(T mean, T std, int seed)
      : mean_(mean), std_(std), seed_(seed) {}

Y
yaoxuefeng 已提交
35 36 37
  __host__ __device__ GaussianGenerator(T mean, T std, int seed, int offset)
      : mean_(mean), std_(std), seed_(seed), offset_(offset) {}

Q
qijun 已提交
38 39 40
  __host__ __device__ T operator()(const unsigned int n) const {
    thrust::minstd_rand rng;
    rng.seed(seed_);
Q
qijun 已提交
41
    thrust::normal_distribution<T> dist(mean_, std_);
Y
yaoxuefeng 已提交
42 43
    unsigned int new_n = n + offset_;
    rng.discard(new_n);
Q
qijun 已提交
44 45 46 47 48
    return dist(rng);
  }
};

template <typename T>
Y
Yu Yang 已提交
49
class GPUGaussianRandomKernel : public framework::OpKernel<T> {
Q
qijun 已提交
50 51 52
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* tensor = context.Output<framework::Tensor>("Out");
Y
Pass CI  
Yu Yang 已提交
53
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
Y
yaoxuefeng 已提交
54
    bool seed_flag = false;
Q
qijun 已提交
55 56 57
    if (seed == 0) {
      std::random_device rd;
      seed = rd();
Y
yaoxuefeng 已提交
58
      seed_flag = true;
Q
qijun 已提交
59
    }
Y
Yu Yang 已提交
60 61
    T mean = static_cast<T>(context.Attr<float>("mean"));
    T std = static_cast<T>(context.Attr<float>("std"));
Y
Yang 已提交
62
    thrust::counting_iterator<int64_t> index_sequence_begin(0);
63
    auto shape = GetShape(context);
64 65 66
    tensor->Resize(shape);
    T* data = tensor->mutable_data<T>(context.GetPlace());

67
    int64_t size = tensor->numel();
Y
yaoxuefeng 已提交
68 69 70 71 72 73 74

    int device_id =
        BOOST_GET_CONST(platform::CUDAPlace, context.GetPlace()).GetDeviceId();
    auto gen_cuda = framework::GetDefaultCUDAGenerator(device_id);

    if (gen_cuda->GetIsInitPy() && seed_flag) {
      auto seed_offset = gen_cuda->IncrementOffset(1);
Y
Yang 已提交
75
      int64_t gen_offset = size * seed_offset.second;
Y
yaoxuefeng 已提交
76 77 78 79 80 81 82 83 84
      thrust::transform(
          index_sequence_begin, index_sequence_begin + size,
          thrust::device_ptr<T>(data),
          GaussianGenerator<T>(mean, std, seed_offset.first, gen_offset));
    } else {
      thrust::transform(index_sequence_begin, index_sequence_begin + size,
                        thrust::device_ptr<T>(data),
                        GaussianGenerator<T>(mean, std, seed));
    }
Q
qijun 已提交
85 86 87
  }
};

88 89 90 91 92 93 94
template <typename T>
class GPUGaussianRandomBatchSizeLikeKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* tensor = context.Output<framework::Tensor>("Out");
    T* data = tensor->mutable_data<T>(context.GetPlace());
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
Y
yaoxuefeng 已提交
95
    bool seed_flag = false;
96 97 98
    if (seed == 0) {
      std::random_device rd;
      seed = rd();
Y
yaoxuefeng 已提交
99
      seed_flag = true;
100 101 102
    }
    T mean = static_cast<T>(context.Attr<float>("mean"));
    T std = static_cast<T>(context.Attr<float>("std"));
Y
Yang 已提交
103
    thrust::counting_iterator<int64_t> index_sequence_begin(0);
104
    int64_t size = tensor->numel();
Y
yaoxuefeng 已提交
105 106 107 108 109 110 111

    int device_id =
        BOOST_GET_CONST(platform::CUDAPlace, context.GetPlace()).GetDeviceId();
    auto gen_cuda = framework::GetDefaultCUDAGenerator(device_id);

    if (gen_cuda->GetIsInitPy() && seed_flag) {
      auto seed_offset = gen_cuda->IncrementOffset(1);
Y
Yang 已提交
112
      int64_t gen_offset = size * seed_offset.second;
Y
yaoxuefeng 已提交
113 114 115 116 117 118 119 120 121
      thrust::transform(index_sequence_begin, index_sequence_begin + size,
                        thrust::device_ptr<T>(data),
                        GaussianGenerator<T>(mean, std, seed_offset.first,
                                             seed_offset.second));
    } else {
      thrust::transform(index_sequence_begin, index_sequence_begin + size,
                        thrust::device_ptr<T>(data),
                        GaussianGenerator<T>(mean, std, seed));
    }
122 123
  }
};
Q
qijun 已提交
124 125
}  // namespace operators
}  // namespace paddle
D
dongzhihong 已提交
126

Q
QI JUN 已提交
127
REGISTER_OP_CUDA_KERNEL(gaussian_random,
128 129
                        paddle::operators::GPUGaussianRandomKernel<float>,
                        paddle::operators::GPUGaussianRandomKernel<double>);
130 131 132 133
REGISTER_OP_CUDA_KERNEL(
    gaussian_random_batch_size_like,
    paddle::operators::GPUGaussianRandomBatchSizeLikeKernel<float>,
    paddle::operators::GPUGaussianRandomBatchSizeLikeKernel<double>);