top_k_kernel.cc 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/top_k_kernel.h"

#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {

template <typename T, typename Context>
void TopkKernel(const Context& dev_ctx,
                const DenseTensor& x,
                const Scalar& k_scalar,
                int axis,
                bool largest,
                bool sorted,
                DenseTensor* out,
                DenseTensor* indices) {
  const auto& in_dims = x.dims();
  const T* in_data = x.data<T>();
  int64_t* indices_data = dev_ctx.template Alloc<int64_t>(indices);
  T* output_data = dev_ctx.template Alloc<T>(out);

  const auto& out_dims = out->dims();

  PADDLE_ENFORCE_EQ(
      sorted,
      true,
      errors::External(
          "XPU API does not support unsorted topk operation currently."
          " Operator will be supported in future update."));
  PADDLE_ENFORCE_EQ(
      largest,
      true,
      errors::External(
          "XPU API does not support smallest topk operation currently."
          " Operator will be supported in future update."));

  if (axis < 0) axis += in_dims.size();

  size_t k = k_scalar.to<int>();
  if (axis + 1 == in_dims.size()) {
    xpu::ctx_guard RAII_GUARD(dev_ctx.x_context());
    int32_t* indices_int_data =
        RAII_GUARD.alloc_l3_or_gm<int32_t>(indices->numel());

    const size_t row =
        phi::product(phi::slice_ddim(in_dims, 0, in_dims.size() - 1));
    const size_t col = in_dims[in_dims.size() - 1];
    int r = xpu::sorted_topk<T>(dev_ctx.x_context(),
                                in_data,
                                output_data,
                                indices_int_data,
                                row,
                                col,
                                k);
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "sorted_topk");

    r = xpu::cast_v2<int32_t, int64_t>(dev_ctx.x_context(),
                                       (const int32_t*)indices_int_data,
                                       indices_data,
                                       indices->numel());
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "cast_v2");
  } else {
    // do transpose if axis is not the last dim of input
    std::vector<int> trans_axes;
    for (int i = 0; i < axis; i++) {
      trans_axes.emplace_back(i);
    }
    for (int i = axis + 1; i < in_dims.size(); i++) {
      trans_axes.emplace_back(i);
    }
    trans_axes.emplace_back(axis);
    // Get input and output dims for transpose
    DDim trans_dims(in_dims);
    DDim trans_out_dims(out->dims());
    for (size_t i = 0; i < trans_axes.size(); i++) {
      trans_dims[i] = in_dims[trans_axes[i]];
      trans_out_dims[i] = out_dims[trans_axes[i]];
    }

    std::vector<int> x_shape_host(in_dims.size(), 0);
    for (int i = 0; i < in_dims.size(); ++i) {
      x_shape_host[i] = in_dims[i];
    }

    xpu::ctx_guard RAII_GUARD(dev_ctx.x_context());
    T* trans_in_data = RAII_GUARD.alloc_l3_or_gm<T>(x.numel());

    // Transpose and save interval output to trans_in
    int r = xpu::transpose<T>(
        dev_ctx.x_context(), in_data, trans_in_data, x_shape_host, trans_axes);
    PADDLE_ENFORCE_EQ(r,
                      xpu::Error_t::SUCCESS,
                      errors::External("XPU API 1st Transpose kernel"
                                       " returns wrong value[%d %s]!",
                                       r,
                                       XPUAPIErrorMsg[r]));

    T* trans_out_data = RAII_GUARD.alloc_l3_or_gm<T>(out->numel());
    int64_t* trans_idx_data = RAII_GUARD.alloc_l3_or_gm<int64_t>(out->numel());
    int32_t* trans_idx_int32_data =
        RAII_GUARD.alloc_l3_or_gm<int32_t>(out->numel());
    const size_t row =
        phi::product(phi::slice_ddim(trans_dims, 0, trans_dims.size() - 1));
    const size_t col = trans_dims[trans_dims.size() - 1];

    // Do top k on transposed input
    r = xpu::sorted_topk<T>(dev_ctx.x_context(),
                            trans_in_data,
                            trans_out_data,
                            trans_idx_int32_data,
                            row,
                            col,
                            k);
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "sorted_topk");

    r = xpu::cast_v2<int32_t, int64_t>(dev_ctx.x_context(),
                                       (const int32_t*)trans_idx_int32_data,
                                       trans_idx_data,
                                       indices->numel());
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "cast_v2");
    // Transpose back to original dims
    std::vector<int> trans_back_axes;
    for (int i = 0; i < axis; i++) {
      trans_axes.emplace_back(i);
    }
    trans_axes.emplace_back(trans_out_dims.size() - 1);
    for (int i = axis; i < trans_out_dims.size() - 1; i++) {
      trans_axes.emplace_back(i);
    }

    std::vector<int> trans_out_shape_host(trans_back_axes.size(), 0);
    for (size_t i = 0; i < trans_back_axes.size(); ++i) {
      trans_out_shape_host[i] = trans_out_dims[i];
    }
    r = xpu::transpose<T>(dev_ctx.x_context(),
                          trans_out_data,
                          output_data,
                          trans_out_shape_host,
                          trans_back_axes);
    PADDLE_ENFORCE_EQ(r,
                      xpu::Error_t::SUCCESS,
                      errors::External("XPU API 2nd Transpose kernel"
                                       " returns wrong value[%d %s]",
                                       r,
                                       XPUAPIErrorMsg[r]));
    r = xpu::transpose<int64_t>(dev_ctx.x_context(),
                                trans_idx_data,
                                indices_data,
                                trans_out_shape_host,
                                trans_back_axes);
    PADDLE_ENFORCE_EQ(r,
                      xpu::Error_t::SUCCESS,
                      errors::External("XPU API 3rd Transpose kernel"
                                       " returns wrong value[%d %s]",
                                       r,
                                       XPUAPIErrorMsg[r]));
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(top_k, XPU, ALL_LAYOUT, phi::TopkKernel, float) {}