mobilenetv2.py 8.9 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear

21
from paddle.utils.download import get_weights_path_from_url
L
LielinJiang 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

__all__ = ['MobileNetV2', 'mobilenet_v2']

model_urls = {
    'mobilenetv2_1.0':
    ('https://paddle-hapi.bj.bcebos.com/models/mobilenet_v2_x1.0.pdparams',
     '8ff74f291f72533f2a7956a4efff9d88')
}


class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 filter_size,
                 num_filters,
                 stride,
                 padding,
                 channels=None,
                 num_groups=1,
                 use_cudnn=True):
        super(ConvBNLayer, self).__init__()

        tmp_param = ParamAttr(name=self.full_name() + "_weights")
        self._conv = Conv2D(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            groups=num_groups,
            act=None,
            use_cudnn=use_cudnn,
            param_attr=tmp_param,
            bias_attr=False)

        self._batch_norm = BatchNorm(
            num_filters,
            param_attr=ParamAttr(name=self.full_name() + "_bn" + "_scale"),
            bias_attr=ParamAttr(name=self.full_name() + "_bn" + "_offset"),
            moving_mean_name=self.full_name() + "_bn" + '_mean',
            moving_variance_name=self.full_name() + "_bn" + '_variance')

    def forward(self, inputs, if_act=True):
        y = self._conv(inputs)
        y = self._batch_norm(y)
        if if_act:
            y = fluid.layers.relu6(y)
        return y


class InvertedResidualUnit(fluid.dygraph.Layer):
    def __init__(
            self,
            num_channels,
            num_in_filter,
            num_filters,
            stride,
            filter_size,
            padding,
            expansion_factor, ):
        super(InvertedResidualUnit, self).__init__()
        num_expfilter = int(round(num_in_filter * expansion_factor))
        self._expand_conv = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_expfilter,
            filter_size=1,
            stride=1,
            padding=0,
            num_groups=1)

        self._bottleneck_conv = ConvBNLayer(
            num_channels=num_expfilter,
            num_filters=num_expfilter,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            num_groups=num_expfilter,
            use_cudnn=False)

        self._linear_conv = ConvBNLayer(
            num_channels=num_expfilter,
            num_filters=num_filters,
            filter_size=1,
            stride=1,
            padding=0,
            num_groups=1)

    def forward(self, inputs, ifshortcut):
        y = self._expand_conv(inputs, if_act=True)
        y = self._bottleneck_conv(y, if_act=True)
        y = self._linear_conv(y, if_act=False)
        if ifshortcut:
            y = fluid.layers.elementwise_add(inputs, y)
        return y


class InvresiBlocks(fluid.dygraph.Layer):
    def __init__(self, in_c, t, c, n, s):
        super(InvresiBlocks, self).__init__()

        self._first_block = InvertedResidualUnit(
            num_channels=in_c,
            num_in_filter=in_c,
            num_filters=c,
            stride=s,
            filter_size=3,
            padding=1,
            expansion_factor=t)

        self._inv_blocks = []
        for i in range(1, n):
            tmp = self.add_sublayer(
                sublayer=InvertedResidualUnit(
                    num_channels=c,
                    num_in_filter=c,
                    num_filters=c,
                    stride=1,
                    filter_size=3,
                    padding=1,
                    expansion_factor=t),
                name=self.full_name() + "_" + str(i + 1))
            self._inv_blocks.append(tmp)

    def forward(self, inputs):
        y = self._first_block(inputs, ifshortcut=False)
        for inv_block in self._inv_blocks:
            y = inv_block(y, ifshortcut=True)
        return y


152
class MobileNetV2(fluid.dygraph.Layer):
L
LielinJiang 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165
    """MobileNetV2 model from
    `"MobileNetV2: Inverted Residuals and Linear Bottlenecks" <https://arxiv.org/abs/1801.04381>`_.

    Args:
        scale (float): scale of channels in each layer. Default: 1.0.
        num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer 
                            will not be defined. Default: 1000.
        with_pool (bool): use pool before the last fc layer or not. Default: True.
        classifier_activation (str): activation for the last fc layer. Default: 'softmax'.

    Examples:
        .. code-block:: python

166
            from paddle.vision.models import MobileNetV2
L
LielinJiang 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

            model = MobileNetV2()
    """

    def __init__(self,
                 scale=1.0,
                 num_classes=1000,
                 with_pool=True,
                 classifier_activation='softmax'):
        super(MobileNetV2, self).__init__()
        self.scale = scale
        self.num_classes = num_classes
        self.with_pool = with_pool

        bottleneck_params_list = [
            (1, 16, 1, 1),
            (6, 24, 2, 2),
            (6, 32, 3, 2),
            (6, 64, 4, 2),
            (6, 96, 3, 1),
            (6, 160, 3, 2),
            (6, 320, 1, 1),
        ]

        self._conv1 = ConvBNLayer(
            num_channels=3,
            num_filters=int(32 * scale),
            filter_size=3,
            stride=2,
            padding=1)

        self._invl = []
        i = 1
        in_c = int(32 * scale)
        for layer_setting in bottleneck_params_list:
            t, c, n, s = layer_setting
            i += 1
            tmp = self.add_sublayer(
                sublayer=InvresiBlocks(
                    in_c=in_c, t=t, c=int(c * scale), n=n, s=s),
                name='conv' + str(i))
            self._invl.append(tmp)
            in_c = int(c * scale)

        self._out_c = int(1280 * scale) if scale > 1.0 else 1280
        self._conv9 = ConvBNLayer(
            num_channels=in_c,
            num_filters=self._out_c,
            filter_size=1,
            stride=1,
            padding=0)

        if with_pool:
            self._pool2d_avg = Pool2D(pool_type='avg', global_pooling=True)

        if num_classes > 0:
            tmp_param = ParamAttr(name=self.full_name() + "fc10_weights")
            self._fc = Linear(
                self._out_c,
                num_classes,
                act=classifier_activation,
                param_attr=tmp_param,
                bias_attr=ParamAttr(name="fc10_offset"))

    def forward(self, inputs):
        y = self._conv1(inputs, if_act=True)
        for inv in self._invl:
            y = inv(y)
        y = self._conv9(y, if_act=True)

        if self.with_pool:
            y = self._pool2d_avg(y)
        if self.num_classes > 0:
            y = fluid.layers.reshape(y, shape=[-1, self._out_c])
            y = self._fc(y)
        return y


def _mobilenet(arch, pretrained=False, **kwargs):
    model = MobileNetV2(**kwargs)
    if pretrained:
        assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format(
            arch)
        weight_path = get_weights_path_from_url(model_urls[arch][0],
                                                model_urls[arch][1])
        assert weight_path.endswith(
            '.pdparams'), "suffix of weight must be .pdparams"
254 255
        param, _ = fluid.load_dygraph(weight_path)
        model.load_dict(param)
L
LielinJiang 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269

    return model


def mobilenet_v2(pretrained=False, scale=1.0, **kwargs):
    """MobileNetV2
    
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
        scale: (float): scale of channels in each layer. Default: 1.0.

    Examples:
        .. code-block:: python

270
            from paddle.vision.models import mobilenet_v2
L
LielinJiang 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283

            # build model
            model = mobilenet_v2()

            # build model and load imagenet pretrained weight
            # model = mobilenet_v2(pretrained=True)

            # build mobilenet v2 with scale=0.5
            model = mobilenet_v2(scale=0.5)
    """
    model = _mobilenet(
        'mobilenetv2_' + str(scale), pretrained, scale=scale, **kwargs)
    return model