norm.py 14.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import warnings
Z
zhangkaihuo 已提交
30 31
from paddle.nn.layer.norm import _BatchNormBase
from paddle.framework import no_grad
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104


class BatchNorm(paddle.nn.BatchNorm1D):
    r"""
    Applies Batch Normalization over a SparseCooTensor as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

    When use_global_stats = False, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are the statistics of one mini-batch.
    Calculated as follows:

    ..  math::

        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &//\
        \ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \
        \mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\

    When use_global_stats = True, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are not the statistics of one mini-batch.
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global \ mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global \ variance \\

    The normalization function formula is as follows:

    ..  math::

        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift

    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable proportional parameter
    - :math:`\beta` : trainable deviation parameter

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
            will create ParamAttr as weight_attr. If it is set to Fasle, the weight is not learnable.
            If the Initializer of the weight_attr is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
            will create ParamAttr as bias_attr. If it is set to Fasle, the weight is not learnable.
            If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
        data_format(str, optional): Specify the input data format, may be "NC", "NCL" or "NLC". Defalut "NCL".
        use_global_stats(bool|None, optional): Whether to use global mean and variance. If set to False, use the statistics of one mini-batch, if set to True, use the global statistics, if set to None, use global statistics in the test phase and use the statistics of one mini-batch in the training phase. Default: None.
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
        - x: A SparseCooTensor with layout = 'NDHWC'.
        - output: SparseCooTensor with same shape as input x.

    Returns:
        None.
    

    Examples:
        .. code-block:: python

          import paddle
          from paddle.fluid.framework import _test_eager_guard

          with _test_eager_guard():
              paddle.seed(123)
              channels = 3
              x_data = paddle.randn((1, 6, 6, 6, channels)).astype('float32')
              dense_x = paddle.to_tensor(x_data) 
              sparse_x = dense_x.to_sparse_coo(4)
105
              batch_norm = paddle.incubate.sparse.nn.BatchNorm(channels)
106 107 108 109 110 111 112 113 114 115 116 117 118 119
              batch_norm_out = batch_norm(sparse_x)
              print(batch_norm_out.shape)
              # [1, 6, 6, 6, 3]
    """

    def __init__(self,
                 num_features,
                 momentum=0.9,
                 epsilon=1e-05,
                 weight_attr=None,
                 bias_attr=None,
                 data_format='NDHWC',
                 use_global_stats=None,
                 name=None):
120 121 122 123 124 125 126 127
        super(BatchNorm, self).__init__(num_features,
                                        momentum=momentum,
                                        epsilon=epsilon,
                                        weight_attr=weight_attr,
                                        bias_attr=bias_attr,
                                        data_format=data_format,
                                        use_global_stats=use_global_stats,
                                        name=name)
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

    def _check_data_format(self, input):
        if input != "NDHWC":
            raise ValueError('sparse BatchNorm only support layout of "NDHWC"')

    def forward(self, input):
        values = input.values()
        self._check_data_format(self._data_format)

        if len(values.shape) != 2:
            raise ValueError('expected 2D input.values() (got {}D)'.format(
                len(values.shape)))

        if self.training:
            warnings.warn(
                "When training, we now always track global mean and variance.")

        batch_norm_out = paddle.nn.functional.batch_norm(
            values,
            self._mean,
            self._variance,
            weight=self.weight,
            bias=self.bias,
            training=self.training,
            momentum=self._momentum,
            epsilon=self._epsilon,
            data_format='NC',
            use_global_stats=self._use_global_stats)

157
        return paddle.incubate.sparse.sparse_coo_tensor(
158 159 160 161
            input.indices(),
            batch_norm_out,
            shape=input.shape,
            stop_gradient=input.stop_gradient)
Z
zhangkaihuo 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335


class SyncBatchNorm(paddle.nn.SyncBatchNorm):
    r"""
    This interface is used to construct a callable object of the ``SyncBatchNorm`` class.
    It implements the function of the Cross-GPU Synchronized Batch Normalization Layer, and can 
    be used as a normalizer function for other operations, such as conv2d and fully connected 
    operations.
    The data is normalized by the mean and variance of the channel based on whole mini-batch
    , which including data in all gpus.
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

    When model in training mode, the :math:`\\mu_{\\beta}` 
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of whole mini-batch data in all gpus.
    Calculated as follows:

    ..  math::

        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &//\
        \ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \
        \mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\

    - :math:`x` : whole mini-batch data in all gpus
    - :math:`m` : the size of the whole mini-batch data

    When model in evaluation mode, the :math:`\\mu_{\\beta}`
    and :math:`\sigma_{\beta}^{2}` are global statistics (moving_mean and moving_variance, 
    which usually got from the pre-trained model). Global statistics calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global \ mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global \ variance \\

    The formula of normalization is as follows:
 
    ..  math::

        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift

    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable scale parameter vector
    - :math:`\beta` : trainable shift parameter vector 

    Note:
        If you want to use container to pack your model and has ``SyncBatchNorm`` in the 
        evaluation phase, please use ``nn.LayerList`` or ``nn.Sequential`` instead of 
        ``list`` to pack the model. 

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
             of this layer. If it is set to None or one attribute of ParamAttr, this layerr
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. If it is set to False, 
             this layer will not have trainable scale parameter. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of this layer.
             If it is set to None or one attribute of ParamAttr, this layer
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. If it is set to False, this layer will not 
             have trainable bias parameter. Default: None.

    Shapes:
        input: Tensor that the dimension from 2 to 5.
        output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

          # required: gpu
          import paddle
          import paddle.incubate.sparse.nn as nn
          import numpy as np

          x = np.array([[[[0.3, 0.4], [0.3, 0.07]], [[0.83, 0.37], [0.18, 0.93]]]]).astype('float32')
          x = paddle.to_tensor(x)
          x = x.to_sparse_coo(len(x.shape)-1)

          if paddle.is_compiled_with_cuda():
              sync_batch_norm = nn.SyncBatchNorm(2)
              hidden1 = sync_batch_norm(x)
              print(hidden1)
              # Tensor(shape=[1, 2, 2, 2], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
              #        indices=[[0, 0, 0, 0],
              #                 [0, 0, 1, 1],
              #                 [0, 1, 0, 1]],
              #        values=[[-0.40730840, -0.13725480],
              #                 [-0.40730840, -1.20299828],
              #                 [ 1.69877410, -0.23414057],
              #                 [-0.88415730,  1.57439375]])
    """

    def __init__(self,
                 num_features,
                 momentum=0.9,
                 epsilon=1e-05,
                 weight_attr=None,
                 bias_attr=None,
                 data_format='NCHW',
                 name=None):
        super(SyncBatchNorm,
              self).__init__(num_features, momentum, epsilon, weight_attr,
                             bias_attr, data_format, name)

    def forward(self, x):
        assert x.is_sparse_coo(
        ), "SyncBatchNorm only support SparseTensor in COO format."
        out = super(SyncBatchNorm, self).forward(x.values())
        return paddle.incubate.sparse.sparse_coo_tensor(
            x.indices(), out, shape=x.shape, stop_gradient=x.stop_gradient)

    @classmethod
    def convert_sync_batchnorm(cls, layer):
        """
        Helper function to convert :class: `paddle.incubate.sparse.nn.BatchNorm` layers in the model to :class: `paddle.incubate.sparse.nn.SyncBatchNorm` layers.

        Parameters:
            layer(paddle.nn.Layer): model containing one or more `BatchNorm` layers.

        Returns:
            The original model with converted SyncBatchNorm layers. If BatchNorm layer in the model, use SyncBatchNorm layer instead.

        Examples:

            .. code-block:: python
                import paddle
                import paddle.incubate.sparse.nn as nn

                model = paddle.nn.Sequential(nn.Conv3D(3, 5, 3), nn.BatchNorm(5))
                sync_model = nn.SyncBatchNorm.convert_sync_batchnorm(model)

        """
        layer_output = layer
        if isinstance(layer, _BatchNormBase):
            if layer._weight_attr != None and not isinstance(
                    layer._weight_attr,
                    bool) and layer._weight_attr.name != None:
                layer._weight_attr.name = layer._weight_attr.name + '_sync'
            if layer._bias_attr != None and not isinstance(
                    layer._bias_attr, bool) and layer._bias_attr.name != None:
                layer._bias_attr.name = layer._bias_attr.name + '_sync'

            #convert sparse BatchNorm
            if isinstance(layer, BatchNorm):
                layer_output = SyncBatchNorm(layer._num_features,
                                             layer._momentum, layer._epsilon,
                                             layer._weight_attr,
                                             layer._bias_attr,
                                             layer._data_format, layer._name)
            #convert dense BatchNorm
            else:
                layer_output = paddle.nn.SyncBatchNorm(
                    layer._num_features, layer._momentum, layer._epsilon,
                    layer._weight_attr, layer._bias_attr, layer._data_format,
                    layer._name)

            if layer._weight_attr != False and layer._bias_attr != False:
                with no_grad():
                    layer_output.weight = layer.weight
                    layer_output.bias = layer.bias
            layer_output._mean = layer._mean
            layer_output._variance = layer._variance

        for name, sublayer in layer.named_children():
            layer_output.add_sublayer(name,
                                      cls.convert_sync_batchnorm(sublayer))
        del layer
        return layer_output