trainer.h 12.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

W
wanghuancoder 已提交
17
#include <ctime>
18
#include <fstream>
W
wanghuancoder 已提交
19
#include <map>
20 21 22 23 24 25 26
#include <memory>
#include <mutex>  // NOLINT
#include <string>
#include <thread>  // NOLINT
#include <vector>

#include "paddle/fluid/framework/data_feed.h"
D
dongdaxiang 已提交
27
#include "paddle/fluid/framework/data_set.h"
28
#include "paddle/fluid/framework/device_worker.h"
T
Thunderbrook 已提交
29 30
#include "paddle/fluid/framework/fleet/heter_wrapper.h"
#include "paddle/fluid/framework/heter_service.h"
31 32 33 34 35 36
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/trainer_desc.pb.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/operators/reader/blocking_queue.h"
D
dongdaxiang 已提交
37
#include "paddle/fluid/platform/port.h"
38 39 40 41

namespace paddle {
namespace framework {

W
wanghuancoder 已提交
42 43 44 45 46 47 48 49 50
class Dataset;
class LoDTensor;
class ProgramDesc;
class PullDenseWorker;
class Scope;
class VarDesc;
template <class T>
class ChannelObject;

51 52 53 54 55 56 57
class TrainerBase {
 public:
  TrainerBase() {}
  virtual ~TrainerBase() {}
  // model memory are hosted in root_scope
  void SetScope(Scope* root_scope);
  void SetDebug(const bool debug) { debug_ = debug; }
58
  void SetDataset(Dataset* dataset_ptr) { dataset_ptr_ = dataset_ptr; }
D
dongdaxiang 已提交
59
  virtual void Initialize(const TrainerDesc& trainer_desc,
60
                          Dataset* data_set) = 0;
61 62 63 64 65
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place) = 0;
  virtual void InitOtherEnv(const ProgramDesc& main_program) = 0;
  virtual void Run() = 0;
  virtual void Finalize() = 0;
66
  virtual Scope* GetWorkerScope(int thread_id) = 0;
H
hutuxian 已提交
67 68
  virtual void InitDumpEnv() = 0;
  virtual void DumpWork(int tid);
69 70

 protected:
H
hutuxian 已提交
71 72 73 74
  virtual std::string GetDumpPath(int tid) = 0;
  virtual void ParseDumpConfig(const TrainerDesc& trainer_desc);
  virtual void FinalizeDumpEnv();

75 76
  Scope* root_scope_;
  bool debug_;
77
  Dataset* dataset_ptr_;
T
Thunderbrook 已提交
78
  TrainerDesc trainer_desc_;
H
hutuxian 已提交
79 80 81

  // For dump param or field
  bool need_dump_field_ = false;
Y
yaoxuefeng 已提交
82
  std::string user_define_dump_filename_;
H
hutuxian 已提交
83 84 85 86 87 88 89 90
  bool need_dump_param_ = false;
  std::string dump_fields_path_;
  std::string dump_converter_;
  std::vector<std::string> dump_param_;
  std::vector<std::string> dump_fields_;
  int dump_thread_num_;
  std::vector<std::thread> dump_thread_;
  std::shared_ptr<paddle::framework::ChannelObject<std::string>> queue_;
91 92 93 94 95 96 97 98 99
};

// general trainer for async execution
// local trainer and distributed trainer are supported
// depends on the assigned device_worker
class MultiTrainer : public TrainerBase {
 public:
  MultiTrainer() {}
  virtual ~MultiTrainer() {}
D
dongdaxiang 已提交
100
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
101 102
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
103
  virtual void InitOtherEnv(const ProgramDesc& main_program);
104 105
  virtual void Run();
  virtual void Finalize();
106
  virtual void InitDumpEnv();
107
  virtual Scope* GetWorkerScope(int thread_id);
H
hutuxian 已提交
108
  virtual std::string GetDumpPath(int tid);
109 110 111 112

 protected:
  int thread_num_;
  std::vector<std::thread> threads_;
J
jiaqi 已提交
113
  std::vector<DataFeed*> readers_;
114
  std::vector<std::shared_ptr<DeviceWorker>> workers_;
115
  std::vector<std::string> need_merge_var_names_;
116 117 118 119

  int mpi_rank_;
  int mpi_size_;
  int dump_file_num_;
120 121 122 123 124 125
};

class DistMultiTrainer : public MultiTrainer {
 public:
  DistMultiTrainer() {}
  virtual ~DistMultiTrainer() {}
D
dongdaxiang 已提交
126
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
127 128
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
129
  virtual void InitOtherEnv(const ProgramDesc& main_program);
130
  virtual void Run();
131
  virtual void Finalize();
132 133
  template <typename T>
  void MergeToRootScope(LoDTensor* root_tensor, LoDTensor* thread_tensor);
134
  virtual void InitDumpEnv();
135
  virtual Scope* GetWorkerScope(int thread_id);
T
Thunderbrook 已提交
136
  virtual void RegisterHeterCallback();
137 138 139 140 141

 protected:
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
};

T
Thunderbrook 已提交
142 143
#if (defined PADDLE_WITH_CUDA || defined PADDLE_WITH_XPU) && \
    (defined PADDLE_WITH_PSLIB)
T
Thunderbrook 已提交
144 145 146 147 148 149 150 151 152 153 154 155
class HeterServiceContext {
 public:
  HeterServiceContext() {}
  virtual ~HeterServiceContext() {
    for (OperatorBase* op : ops_) {
      delete op;
    }
    std::vector<OperatorBase*>().swap(ops_);
  }
  void Reset() { push_dense_status_.clear(); }
  int place_num_;
  Scope* scope_{nullptr};
T
Thunderbrook 已提交
156
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
157
  cudaEvent_t event_;
T
Thunderbrook 已提交
158
#endif
T
Thunderbrook 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
  std::vector<OperatorBase*> ops_;
  std::vector<::std::future<int32_t>> push_dense_status_;
};

class HeterXpuTrainer : public TrainerBase {
 public:
  HeterXpuTrainer() {}
  virtual ~HeterXpuTrainer() {
    for (OperatorBase* op : ops_) {
      delete op;
    }
    std::vector<OperatorBase*>().swap(ops_);
  }
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
  virtual void InitOtherEnv(const ProgramDesc& main_program);
  virtual void Run();
  virtual void Finalize();
  virtual void DumpWork(int tid);
  virtual void RegisterServiceHandler();
  virtual int RunTask(const HeterRequest* request, HeterResponse* response);
  virtual Scope* GetWorkerScope(int thread_id);
  virtual void CacheProgram(const ProgramDesc& main_program) {
    new (&program_) ProgramDesc(main_program);
  }
T
Thunderbrook 已提交
185 186
  virtual std::string GetDumpPath(int tid) { return ""; }
  virtual void InitDumpEnv() {}
T
Thunderbrook 已提交
187
  template <typename T>
T
Thunderbrook 已提交
188
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
189 190 191
  void HeterMemCpy(LoDTensor* tensor, LoDTensor* root_tensor,
                   const paddle::platform::Place& thread_place,
                   cudaStream_t stream);
T
Thunderbrook 已提交
192 193 194 195 196
#endif
#ifdef PADDLE_WITH_XPU
  void HeterMemCpy(LoDTensor* thread_tensor, LoDTensor* root_tensor,
                   const paddle::platform::Place& thread_place);
#endif
T
Thunderbrook 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
  void CreateThreadParam(const ProgramDesc& program, int num);
  template <typename T>
  void MergeToRootScope(LoDTensor* root_tensor, LoDTensor* thread_tensor);
  int EndPass(const HeterRequest* request, HeterResponse* response);
  int StopService(const HeterRequest* request, HeterResponse* response);

 protected:
  DownpourWorkerParameter param_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  std::vector<std::string> need_merge_var_names_;
  float scale_datanorm_;
  int xpu_begin_op_index_;
  int xpu_end_op_index_;
  bool running_;
  paddle::platform::Place place_;
  std::mutex mutex_;
  ProgramDesc program_;
  std::condition_variable cond_;
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  std::shared_ptr<paddle::framework::HeterWrapper> heter_ptr_;
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
  std::vector<OperatorBase*> ops_;
  std::vector<std::string> op_names_;
  std::vector<Scope*> place_scopes_;
  BtObjectPool<HeterServiceContext> object_pool_;
  std::vector<platform::Place> places_;
T
Thunderbrook 已提交
223 224
#ifdef PADDLE_WITH_CUDA
  std::vector<cudaStream_t> copy_streams_;
T
Thunderbrook 已提交
225
  std::vector<cudaEvent_t> events_;
T
Thunderbrook 已提交
226
#endif
T
Thunderbrook 已提交
227
};
T
Thunderbrook 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277

class HeterBoxTrainer : public TrainerBase {
 public:
  HeterBoxTrainer() {}
  virtual ~HeterBoxTrainer() {}
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
  virtual void InitOtherEnv(const ProgramDesc& main_program);
  virtual void Run();
  virtual void Finalize();
  virtual void RegisterHeterCallback();
  virtual void DumpWork(int tid);
  virtual Scope* GetWorkerScope(int thread_id);
  virtual void CacheProgram(const ProgramDesc& main_program) {
    new (&program_) ProgramDesc(main_program);
  }
  virtual std::string GetDumpPath(int tid) { return ""; }
  virtual void InitDumpEnv() {}
  template <typename T>
#ifdef PADDLE_WITH_CUDA
  void HeterMemCpy(LoDTensor* tensor, LoDTensor* root_tensor,
                   const paddle::platform::Place& thread_place,
                   cudaStream_t stream);
#endif
  void CreateThreadParam(const ProgramDesc& program, int num);
  template <typename T>
  void MergeToRootScope(LoDTensor* root_tensor, LoDTensor* thread_tensor);

 protected:
  DownpourWorkerParameter param_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  std::vector<std::string> need_merge_var_names_;
  float scale_datanorm_;
  paddle::platform::Place place_;
  ProgramDesc program_;
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
  std::vector<std::shared_ptr<DeviceWorker>> workers_;
  std::vector<platform::Place> places_;
  // ps-gpu
  std::vector<std::thread> pull_threads_;
  std::vector<std::thread> threads_;
  int use_ps_gpu_;
  int thread_num_;
#ifdef PADDLE_WITH_CUDA
  std::vector<cudaStream_t> copy_streams_;
  std::vector<cudaEvent_t> events_;
#endif
};
T
Thunderbrook 已提交
278 279
#endif

T
Thunderbrook 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
#if (defined PADDLE_WITH_NCCL) && (defined PADDLE_WITH_PSLIB)
class PSGPUTrainer : public TrainerBase {
 public:
  PSGPUTrainer() {}
  virtual ~PSGPUTrainer() {}
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
  virtual void InitOtherEnv(const ProgramDesc& main_program);
  virtual void Run();
  virtual void Finalize();
  virtual void RegisterHeterCallback();
  virtual void DumpWork(int tid);
  virtual Scope* GetWorkerScope(int thread_id);
  virtual void CacheProgram(const ProgramDesc& main_program) {
    new (&program_) ProgramDesc(main_program);
  }
  virtual std::string GetDumpPath(int tid) { return ""; }
  virtual void InitDumpEnv() {}
  void BuildGPUPSTask(int table_id, int feadim);
  /*
  template <typename T>
  void HeterMemCpy(LoDTensor* tensor, LoDTensor* root_tensor,
                   const paddle::platform::Place& thread_place,
                   cudaStream_t stream);
  */

  template <typename T>
  void MergeToRootScope(LoDTensor* root_tensor, LoDTensor* thread_tensor);

 protected:
  Dataset* dataset_;
  DownpourWorkerParameter param_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  std::vector<std::string> need_merge_var_names_;
  float scale_datanorm_;
  paddle::platform::Place place_;
  ProgramDesc program_;
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
  std::vector<std::shared_ptr<DeviceWorker>> workers_;
  std::vector<platform::Place> places_;
  // ps-gpu
  std::vector<std::thread> threads_;
  int use_ps_gpu_;
  int thread_num_;
};
#endif

329
#if defined(PADDLE_WITH_NCCL)
H
hutuxian 已提交
330 331 332 333 334 335 336
class PipelineTrainer : public TrainerBase {
 public:
  PipelineTrainer() {}
  ~PipelineTrainer() override {}
  void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set) override;
  void InitTrainerEnv(const ProgramDesc& main_program,
                      const platform::Place& place) override;
H
hutuxian 已提交
337
  void InitOtherEnv(const ProgramDesc& main_program) override;
H
hutuxian 已提交
338 339
  void Run() override;
  void Finalize() override;
340
  virtual Scope* GetWorkerScope(int thread_id);
H
hutuxian 已提交
341 342
  void InitDumpEnv() override;
  virtual std::string GetDumpPath(int tid);
343
  void GetSkipVars(const ProgramDesc& main_program);
H
hutuxian 已提交
344 345

 protected:
L
lilong12 已提交
346
  int num_microbatches_;
347 348
  platform::Place place_;
  std::vector<std::string> skip_vars_;
L
lilong12 已提交
349
  TrainerDesc trainer_desc_;
H
hutuxian 已提交
350

351 352 353 354 355
  std::future<void> section_thread_;
  std::shared_ptr<paddle::framework::DeviceWorker> worker_;
  Scope* minibatch_scope_;
  // microbatch_scopes_: [microbatch_id]
  std::vector<Scope*> microbatch_scopes_;
L
lilong12 已提交
356

357 358
  void CopyParameters(int microbatch_id, const ProgramDesc& program,
                      const platform::Place& place);
H
hutuxian 已提交
359 360
};
#endif
L
lilong12 已提交
361

362 363
}  // namespace framework
}  // namespace paddle