layer_function_generator.py 12.8 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
D
dzhwinter 已提交
16 17
import re
import functools
18
import warnings
Y
yuyang18 已提交
19
import string
D
dzhwinter 已提交
20

21
from six.moves import cStringIO
22
from ..proto import framework_pb2
23
from ..framework import OpProtoHolder, Variable, core, convert_np_dtype_to_dtype_, in_dygraph_mode
24
from ..layer_helper import LayerHelper
25
from ..data_feeder import check_variable_and_dtype
D
dzhwinter 已提交
26

27
__all__ = [
28 29
    'generate_layer_fn', 'generate_activation_fn', 'generate_inplace_fn',
    'autodoc', 'templatedoc'
30
]
D
dzhwinter 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48


def _convert_(name):
    """
    Formatting.

    Args:
       name: The name/alias

    This function takes in a name and converts it to a standard format of
    group1_group2. Where as per the regular expression, group1 can have
    alphabets and numbers and group2 has capital alphabets.

    """
    s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)
    return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()


Y
yuyang18 已提交
49 50 51 52
def _type_to_str_(tp):
    return framework_pb2.AttrType.Name(tp)


53 54 55 56 57
_two_dollar_pattern_ = re.compile(r"\$\$([^\$]+)\$\$")
_single_dollar_pattern_ = re.compile(r"\$([^\$]+)\$")
_two_bang_pattern_ = re.compile(r"!!([^!]+)!!")


Y
yuyang18 已提交
58
def escape_math(text):
N
Noel 已提交
59 60 61 62 63
    #return _two_bang_pattern_.sub(
    #    r'$$\1$$',
    #    _single_dollar_pattern_.sub(r':math:\n`\1`',
    #                                _two_dollar_pattern_.sub(r"!!\1!!", text)))
    return _two_dollar_pattern_.sub(r':math:`\1`', text)
Y
yuyang18 已提交
64 65


66 67 68
def _generate_doc_string_(op_proto,
                          additional_args_lines=None,
                          skip_attrs_set=None):
D
dzhwinter 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81
    """
    Generate docstring by OpProto

    Args:
        op_proto (framework_pb2.OpProto): a protobuf message typed OpProto

    Returns:
        str: the document string
    """

    if not isinstance(op_proto, framework_pb2.OpProto):
        raise TypeError("OpProto should be `framework_pb2.OpProto`")

82
    buf = cStringIO()
83
    buf.write(escape_math(op_proto.comment))
D
dzhwinter 已提交
84 85
    buf.write('\nArgs:\n')
    for each_input in op_proto.inputs:
86
        line_begin = '    {0}'.format(_convert_(each_input.name))
D
dzhwinter 已提交
87
        buf.write(line_begin)
88
        buf.write(" (Tensor): ")
89 90 91 92 93
        buf.write(escape_math(each_input.comment))
        if each_input.duplicable:
            buf.write("  Duplicatable.")
        if each_input.dispensable:
            buf.write("  Optional.")
D
dzhwinter 已提交
94 95
        buf.write('\n')

96
    skip_attrs = OpProtoHolder.generated_op_attr_names()
97 98 99
    # attr use_mkldnn and is_test also should not be visible to users.
    skip_attrs.add("use_mkldnn")
    skip_attrs.add("is_test")
100
    skip_attrs.add("use_cudnn")
101 102 103 104 105

    if skip_attrs_set:
        for t in skip_attrs_set:
            skip_attrs.add(t)

D
dzhwinter 已提交
106
    for each_attr in op_proto.attrs:
107 108
        if each_attr.name in skip_attrs:
            continue
D
dzhwinter 已提交
109 110 111 112 113
        buf.write('    ')
        buf.write(each_attr.name)
        buf.write(' (')
        buf.write(_type_to_str_(each_attr.type))
        buf.write('): ')
114
        buf.write(escape_math(each_attr.comment))
D
dzhwinter 已提交
115 116
        buf.write('\n')

S
sneaxiy 已提交
117 118 119 120 121 122 123
    if additional_args_lines is not None:
        for line in additional_args_lines:
            line = line.strip()
            buf.write('    ')
            buf.write(line)
            buf.write('\n')

D
dzhwinter 已提交
124 125 126 127 128 129
    if len(op_proto.outputs) != 0:
        buf.write('\nReturns:\n')
        buf.write('    ')
        for each_opt in op_proto.outputs:
            if not each_opt.intermediate:
                break
130 131
        buf.write(_convert_(each_opt.name))
        buf.write(' (Tensor): ')
132
        buf.write(escape_math(each_opt.comment))
D
dzhwinter 已提交
133 134 135 136

    return buf.getvalue()


137
def generate_layer_fn(op_type):
138
    """Register the Python layer for an Operator.
D
dzhwinter 已提交
139 140

    Args:
141
       op_type: The name of the operator to be created.
D
dzhwinter 已提交
142 143 144 145 146 147 148

    This function takes in the operator type (sigmoid, mean , average etc) and
    creates the operator functionality.

    """
    op_proto = OpProtoHolder.instance().get_op_proto(op_type)
    not_intermediate_outputs = \
149
        [output for output in op_proto.outputs if not output.intermediate]
D
dzhwinter 已提交
150
    intermediate_outputs = \
151
        [output for output in op_proto.outputs if output.intermediate]
D
dzhwinter 已提交
152 153 154

    if len(not_intermediate_outputs) != 1:
        raise ValueError("Only one non intermediate output operator can be",
Y
yuyang18 已提交
155
                         "automatically generated. {0}".format(op_type))
D
dzhwinter 已提交
156 157 158

    if not_intermediate_outputs[0].duplicable:
        raise ValueError(
159
            "Only non duplicable op can be automatically generated.")
D
dzhwinter 已提交
160 161 162 163

    for output in intermediate_outputs:
        if output.duplicable:
            raise ValueError("The op can be automatically generated only when ",
164
                             "all intermediate ops are not duplicable.")
D
dzhwinter 已提交
165 166 167 168

    o_name = not_intermediate_outputs[0].name
    intermediate_output_names = [output.name for output in intermediate_outputs]

Y
Yu Yang 已提交
169
    def infer_and_check_dtype(op_proto, *args, **kwargs):
D
dzhwinter 已提交
170 171 172 173 174 175 176 177 178 179
        """
        This function performs the sanity check for dtype and
        instance type.
        """
        dtype = None
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
Y
Yu Yang 已提交
180
            if len(val) == 0:
181 182
                if len(args) == 0:
                    continue
Y
Yu Yang 已提交
183 184 185
                val = [args[0]]
                args = args[1:]

D
dzhwinter 已提交
186 187 188 189 190 191 192 193 194 195 196 197
            for each in val:
                if not isinstance(each, Variable):
                    raise ValueError("input of {0} must be variable".format(
                        op_type))

                if dtype is None:
                    dtype = each.dtype
                elif dtype != each.dtype:
                    raise ValueError(
                        "operator {0} must input same dtype. {1} vs {2}".format(
                            op_type, dtype, each.dtype))

W
Wu Yi 已提交
198 199 200 201 202 203 204 205 206
        if dtype is None:
            arg_dtype = kwargs.get("dtype")
            if arg_dtype:
                if not isinstance(arg_dtype, core.VarDesc.VarType):
                    dtype = convert_np_dtype_to_dtype_(arg_dtype)
                else:
                    dtype = arg_dtype
            else:
                dtype = core.VarDesc.VarType.FP32
D
dzhwinter 已提交
207 208
        return dtype

Y
Yu Yang 已提交
209
    def func(*args, **kwargs):
D
dzhwinter 已提交
210 211
        helper = LayerHelper(op_type, **kwargs)

Y
Yu Yang 已提交
212
        dtype = infer_and_check_dtype(op_proto, *args, **kwargs)
D
dzhwinter 已提交
213 214 215 216 217 218 219

        inputs = dict()
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
Y
Yu Yang 已提交
220 221 222
            if len(val) == 0 and len(args) != 0:
                val = args[0]
                args = args[1:]
D
dzhwinter 已提交
223 224 225
            inputs[ipt.name] = val

        outputs = dict()
226 227 228 229 230
        out = kwargs.pop(_convert_(o_name), [])
        if out:
            out_var = out[0] if (isinstance(out, list) or
                                 isinstance(out, tuple)) else out
        else:
X
Xin Pan 已提交
231
            out_var = helper.create_variable_for_type_inference(dtype=dtype)
232
        outputs[o_name] = [out_var]
D
dzhwinter 已提交
233
        for name in intermediate_output_names:
X
Xin Pan 已提交
234 235 236
            outputs[name] = [
                helper.create_variable_for_type_inference(dtype=dtype)
            ]
D
dzhwinter 已提交
237 238
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=kwargs)
239
        return helper.append_activation(out_var)
D
dzhwinter 已提交
240 241 242 243 244 245

    func.__name__ = op_type
    func.__doc__ = _generate_doc_string_(op_proto)
    return func


246
def generate_activation_fn(op_type):
247 248 249 250 251 252 253 254 255 256 257
    """Register the Python layer for an Operator without Attribute.

    Args:
       op_type: The name of the operator to be created.

    This function takes in the operator type (sigmoid, exp , tanh etc) and
    creates the operator functionality.

    """
    op_proto = OpProtoHolder.instance().get_op_proto(op_type)

T
tensor-tang 已提交
258
    def func(x, name=None):
259 260
        if in_dygraph_mode():
            op = getattr(core.ops, op_type)
261
            return op(x)
262

263 264 265 266 267 268 269 270 271
        if op_type not in ["abs", "exp", "square"]:
            check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                     op_type)
        else:
            # abs exp square ops support dtype(int32, int64, float16, float32, float64)
            check_variable_and_dtype(
                x, 'x', ['int32', 'int64', 'float16', 'float32', 'float64'],
                op_type)

272 273
        helper = LayerHelper(op_type, **locals())

X
Xin Pan 已提交
274
        output = helper.create_variable_for_type_inference(dtype=x.dtype)
T
tensor-tang 已提交
275
        helper.append_op(type=op_type, inputs={"X": x}, outputs={"Out": output})
276 277 278
        return output

    func.__name__ = op_type
279 280 281
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
282
            "name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`."
283
        ])
284 285 286
    return func


287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
def generate_inplace_fn(inplace_op_type):
    """Register the Python layer for an Inplace Operator without Attribute.

    Args:
       inplace_op_type: The name of the inplace operator to be created.

    This function takes in the inplace operator type (exp_ , ceil_ etc) and
    creates the operator functionality.
    """
    origin_op_type = inplace_op_type[:-1]

    def func(x, name=None):
        if in_dygraph_mode():
            op = getattr(core.ops, inplace_op_type)
            return op(x)
        warnings.warn(
            "In static mode, {}() is the same as {}() and does not perform inplace operation.".
            format(inplace_op_type, origin_op_type))
        return generate_activation_fn(origin_op_type)(x, name)

    func.__name__ = inplace_op_type
    func.__doc__ = """
Inplace version of ``{0}`` API, the output Tensor will be inplaced with input ``x``.
Please refer to :ref:`api_fluid_layers_{1}`.
""".format(origin_op_type, origin_op_type)

    return func


316 317 318 319 320 321 322
def autodoc(comment=""):
    def __impl__(func):
        func.__doc__ = _generate_doc_string_(OpProtoHolder.instance(
        ).get_op_proto(func.__name__)) + comment
        return func

    return __impl__
Y
yuyang18 已提交
323 324


Y
yuyang18 已提交
325
def templatedoc(op_type=None):
Y
yuyang18 已提交
326 327 328 329 330 331 332 333 334 335
    """
    Decorator of layer function. It will use the docstring from the layer
    function as the template. The template arguments are:

    * ${comment}: The operator comment written in CPP.
    * ${{name}_comment}: The comment of ${name} written with AddAttr, AddOutput,
        and AddInput. The ${name} is Python snake style. i.e., xxx_xxx.
    * ${{name}_type}: The type of ${name}.

    Returns:
Y
yuyang18 已提交
336
        Decorated function.
Y
yuyang18 已提交
337 338
    """

Y
yuyang18 已提交
339 340 341
    def trim_ending_dot(msg):
        return msg.rstrip('.')

Y
yuyang18 已提交
342
    def __impl__(func):
Y
yuyang18 已提交
343 344 345 346 347
        if op_type is None:
            op_type_name = func.__name__
        else:
            op_type_name = op_type
        op_proto = OpProtoHolder.instance().get_op_proto(op_type_name)
Y
yuyang18 已提交
348
        tmpl = string.Template(func.__doc__)
Y
yuyang18 已提交
349 350 351 352

        comment_lines = op_proto.comment.split("\n")
        comment = ""
        for line in comment_lines:
Y
yuyang18 已提交
353 354
            line = line.strip()
            if len(line) != 0:
Y
yuyang18 已提交
355
                comment += escape_math(line)
Y
yuyang18 已提交
356
                comment += " "
Y
yuyang18 已提交
357 358
            elif len(comment) != 0:
                comment += "\n    \n    "
Y
yuyang18 已提交
359

Y
yuyang18 已提交
360
        args = {"comment": trim_ending_dot(comment)}
Y
yuyang18 已提交
361 362
        for each_input in op_proto.inputs:
            input_name = _convert_(each_input.name)
Y
yuyang18 已提交
363 364
            args["{0}_comment".format(input_name)] = trim_ending_dot(
                each_input.comment)
Y
yuyang18 已提交
365 366 367
            args["{0}_type".format(input_name)] = "Variable"
        for each_attr in op_proto.attrs:
            input_name = _convert_(each_attr.name)
Y
yuyang18 已提交
368 369
            args["{0}_comment".format(input_name)] = trim_ending_dot(
                each_attr.comment)
Y
yuyang18 已提交
370 371 372 373
            args["{0}_type".format(input_name)] = _type_to_str_(each_attr.type)

        for each_opt in op_proto.outputs:
            output_name = _convert_(each_opt.name)
Y
yuyang18 已提交
374 375
            args["{0}_comment".format(output_name)] = trim_ending_dot(
                each_opt.comment)
Y
yuyang18 已提交
376 377 378 379 380
            args["{0}_type".format(output_name)] = "Variable"
        func.__doc__ = tmpl.substitute(args)
        return func

    return __impl__
381 382 383 384 385 386 387 388 389 390 391


def add_sample_code(func, sample_code):
    """
    Append sample code for dynamically generated functions. 

    Args:
       func: The function of the function to be append sample code to.
       sample_code: sample code session in rst format.
    """
    func.__doc__ = func.__doc__ + sample_code