gumbel_softmax_kernel_impl.h 4.2 KB
Newer Older
F
From00 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <random>
18

F
From00 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
#include "paddle/fluid/operators/math/softmax.h"
#include "paddle/fluid/operators/math/softmax_impl.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/kernels/funcs/axis_utils.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"

namespace phi {

template <typename Context, typename T, int64_t Rank>
struct ArgMaxFunctor {
  void operator()(const Context& ctx,
                  const DenseTensor& in,
                  DenseTensor* index_tensor,
                  const int64_t& axis) {
    auto in_eigen = EigenTensor<T, Rank>::From(in, in.dims());
    auto index_eigen = EigenTensor<int, Rank - 1>::From(*index_tensor);
    index_eigen = in_eigen.argmax(axis).template cast<int>();
  }
};

template <typename Context, typename T>
struct GumbleNoiseGenerator;

template <typename Context, typename T>
struct OneHotGenerator;

template <typename T, typename Context>
46 47 48 49 50 51 52
void GumbelSoftmaxKernelHelper(const Context& ctx,
                               const DenseTensor& x,
                               float temperature,
                               bool hard,
                               int axis,
                               DenseTensor* out,
                               bool is_test) {
F
From00 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
  const int rank = x.dims().size();
  axis = funcs::CanonicalAxis(axis, rank);
  int axis_dim = x.dims()[axis];

  PADDLE_ENFORCE_GT(temperature,
                    0,
                    phi::errors::InvalidArgument(
                        "The temperature must be greater than 0. But "
                        "received temperature = %f",
                        temperature));

  // allocate memory on device.
  ctx.template Alloc<T>(out);
  if (out->numel() == 0) {
    return;
  }

  const int size_to_axis = funcs::SizeToAxis(axis, x.dims());
  const int size_from_axis = funcs::SizeFromAxis(axis, x.dims());
  DenseTensor x_noise_2d, out_2d(*out);
  x_noise_2d.Resize({size_to_axis, size_from_axis});
  out_2d.Resize({size_to_axis, size_from_axis});

  // generate gumbel noise and add it to X
  auto* x_noise_data = ctx.template Alloc<T>(&x_noise_2d);
  GumbleNoiseGenerator<Context, T>::Transform(ctx,
                                              x.data<T>(),
                                              x_noise_data,
                                              size_to_axis,
                                              size_from_axis,
                                              temperature);
84 85 86 87 88 89 90
  if (is_test) {
    paddle::operators::math::SoftmaxFunctor<Context, T, true>()(
        ctx, axis_dim, &x_noise_2d, &out_2d);
  } else {
    paddle::operators::math::SoftmaxFunctor<Context, T, false>()(
        ctx, axis_dim, &x_noise_2d, &out_2d);
  }
F
From00 已提交
91 92 93 94 95 96

  if (hard) {
    OneHotGenerator<Context, T>::Transform(ctx, x, out, axis);
  }
}

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
template <typename T, typename Context>
void GumbelSoftmaxKernel(const Context& ctx,
                         const DenseTensor& x,
                         float temperature,
                         bool hard,
                         int axis,
                         DenseTensor* out) {
  GumbelSoftmaxKernelHelper<T, Context>(
      ctx, x, temperature, hard, axis, out, false);
}

template <typename T, typename Context>
void GumbelSoftmaxInferKernel(const Context& ctx,
                              const DenseTensor& x,
                              float temperature,
                              bool hard,
                              int axis,
                              DenseTensor* out) {
  GumbelSoftmaxKernelHelper<T, Context>(
      ctx, x, temperature, hard, axis, out, true);
}

F
From00 已提交
119
}  // namespace phi