operator.h 11.5 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
Q
Qiao Longfei 已提交
18 19 20 21
#include <string>
#include <unordered_map>
#include <vector>

Y
Yi Wang 已提交
22
#include "paddle/framework/attribute.h"
Q
qijun 已提交
23
#include "paddle/framework/op_desc.pb.h"
Y
Yan Chunwei 已提交
24
#include "paddle/framework/op_proto.pb.h"
Q
qijun 已提交
25 26 27 28
#include "paddle/framework/scope.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
29
#include "paddle/platform/variant.h"
Q
qijun 已提交
30
#include "paddle/utils/Error.h"
Q
Qiao Longfei 已提交
31 32 33 34

namespace paddle {
namespace framework {

35
/// If a variable is a empty variable, that name will be used.
36
constexpr char kEmptyVarName[] = "@EMPTY@";
37 38 39

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
40
constexpr char kTempVarName[] = "@TEMP@";
41 42 43 44

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
45
constexpr char kGradVarSuffix[] = "@GRAD";
46 47

/// Variables with this suffix are supposed to be filled up with zeros.
48
constexpr char kZeroVarSuffix[] = "@ZERO";
49 50 51 52 53

inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

Q
Qiao Longfei 已提交
54
class OperatorBase;
55 56
class InferShapeContext;
class ExecutionContext;
57

Q
Qiao Longfei 已提交
58 59 60 61 62 63 64 65
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
66 67 68 69 70
  OperatorBase(const std::string& type, const std::vector<std::string>& inputs,
               const std::vector<std::string>& outputs,
               const AttributeMap& attrs,
               std::unordered_map<std::string, int>* in_out_idxs)
      : type_(type),
Y
Yi Wang 已提交
71 72
        inputs_(inputs),
        outputs_(outputs),
73 74 75
        attrs_(attrs),
        in_out_idxs_(in_out_idxs) {}

Q
Qiao Longfei 已提交
76 77 78 79 80 81 82 83 84
  virtual ~OperatorBase() {}

  template <typename T>
  inline const T& GetAttr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }

85
  virtual std::string DebugString() const;
Q
Qiao Longfei 已提交
86

Q
Qiao Longfei 已提交
87 88 89 90
  /// Init will be called after CreateOperator, you can put some initialization
  /// logic here.
  virtual void Init() {}

Q
Qiao Longfei 已提交
91 92
  /// InferShape infer the size of Variables used by this Operator with
  /// information inside scope
Y
Yu Yang 已提交
93
  virtual void InferShape(const Scope& scope) const = 0;
Q
Qiao Longfei 已提交
94 95

  /// Net will call this function to Run an op.
Y
Yu Yang 已提交
96
  virtual void Run(const Scope& scope,
Y
Yu Yang 已提交
97 98
                   const platform::DeviceContext& dev_ctx) const = 0;

Y
Yu Yang 已提交
99 100
  virtual bool IsNetOp() const { return false; }

101 102
  virtual bool SupportGPU() const { return false; }

D
dongzhihong 已提交
103 104 105
  /// rename inputs outputs name
  void Rename(const std::string& old_name, const std::string& new_name);

Y
Yu Yang 已提交
106
  //! Get a input with argument's name described in `op_proto`
Y
Yan Chunwei 已提交
107
  const std::string& Input(const std::string& name) const;
Y
Yu Yang 已提交
108 109
  //! Get a input which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yan Chunwei 已提交
110
  std::vector<std::string> Inputs(const std::string& name) const;
Y
Yi Wang 已提交
111

Y
Yu Yang 已提交
112
  //! Get a output with argument's name described in `op_proto`
Y
Yan Chunwei 已提交
113
  const std::string& Output(const std::string& name) const;
Y
Yu Yang 已提交
114 115
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yan Chunwei 已提交
116 117
  std::vector<std::string> Outputs(const std::string& name) const;

Y
Yi Wang 已提交
118 119 120 121
  const std::string Type() const { return type_; }
  const std::vector<std::string> Inputs() const { return inputs_; }
  const std::vector<std::string> Outputs() const { return outputs_; }
  const AttributeMap& Attrs() const { return attrs_; }
122 123 124
  const std::unordered_map<std::string, int>* InOutIdx() const {
    return in_out_idxs_.get();
  }
Y
Yi Wang 已提交
125

Q
Qiao Longfei 已提交
126
 public:
Q
Qiao Longfei 已提交
127
  std::string type_;
D
dongzhihong 已提交
128 129 130 131
  // NOTE: in case of OpGrad, inputs_ contains:
  // I (Inputs)
  // O (Outputs)
  // OG (Output Gradients)
Q
Qiao Longfei 已提交
132
  std::vector<std::string> inputs_;
D
dongzhihong 已提交
133 134
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Q
Qiao Longfei 已提交
135 136
  std::vector<std::string> outputs_;
  AttributeMap attrs_;
Y
Yan Chunwei 已提交
137
  // store the arguments' offset described in op_desc.
Y
Yu Yang 已提交
138
  std::shared_ptr<std::unordered_map<std::string, int>> in_out_idxs_;
Y
Yan Chunwei 已提交
139 140
};

141
class InferShapeContext {
Y
Yan Chunwei 已提交
142
 public:
143 144
  InferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}
145 146

  size_t InputSize() const { return op_.inputs_.size(); }
Y
Yan Chunwei 已提交
147

148 149
  size_t OutputSize() const { return op_.outputs_.size(); }

150
  const Variable* InputVar(const size_t index) const {
151
    return scope_.FindVar(op_.inputs_.at(index));
Y
Yan Chunwei 已提交
152 153
  }

154
  Variable* OutputVar(const size_t index) const {
155
    return scope_.FindVar(op_.outputs_.at(index));
Y
Yan Chunwei 已提交
156 157
  }

158
  const Variable* InputVar(const std::string& name) const {
Y
Yu Yang 已提交
159
    return scope_.FindVar(op_.Input(name));
Y
Yan Chunwei 已提交
160 161
  }

162
  Variable* OutputVar(const std::string& name) const {
Y
Yu Yang 已提交
163
    return scope_.FindVar(op_.Output(name));
Y
Yan Chunwei 已提交
164 165
  }

166 167
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
168 169
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
170
    res.reserve(names.size());
Y
Yan Chunwei 已提交
171
    std::transform(
172
        names.begin(), names.end(), std::back_inserter(res),
Y
Yu Yang 已提交
173
        [this](const std::string& name) { return scope_.FindVar(name); });
Y
Yan Chunwei 已提交
174 175 176
    return res;
  }

177
  std::vector<const Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
178 179
    auto names = op_.Outputs(name);
    std::vector<const Variable*> res;
180
    res.reserve(names.size());
Y
Yan Chunwei 已提交
181
    std::transform(
182
        names.begin(), names.end(), std::back_inserter(res),
Y
Yu Yang 已提交
183
        [this](const std::string& name) { return scope_.FindVar(name); });
Y
Yan Chunwei 已提交
184 185 186
    return res;
  }

187
  template <typename T>
188 189
  const T* Input(const size_t index) const {
    auto var = InputVar(index);
Y
Yan Chunwei 已提交
190
    PADDLE_ENFORCE_NOT_NULL(var, "Input(%d) should not be nullptr", index);
191
    return &var->Get<T>();
192 193 194
  }

  template <typename T>
195 196
  T* Output(const size_t index) const {
    auto var = OutputVar(index);
Y
Yan Chunwei 已提交
197 198
    PADDLE_ENFORCE_NOT_NULL(
        var,
Y
Yan Chunwei 已提交
199 200 201
        "Output(%d) not be nullptr, which means variable [%s] does not "
        "exist in scope",
        index, op_.outputs_[index]);
202
    return var->GetMutable<T>();
203 204 205 206
  }

  template <typename T>
  const T* Input(const std::string& name) const {
207
    auto var = InputVar(name);
Y
Yan Chunwei 已提交
208
    PADDLE_ENFORCE_NOT_NULL(var, "Input(%s) should not be nullptr", name);
209
    return &var->Get<T>();
210 211 212 213
  }

  template <typename T>
  T* Output(const std::string& name) const {
214
    auto var = OutputVar(name);
Y
Yan Chunwei 已提交
215
    PADDLE_ENFORCE_NOT_NULL(var, "Output(%s) should not be nullptr", name);
216
    return var->GetMutable<T>();
217 218 219 220 221 222 223 224
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
225
                   [&](const std::string& sub_name) {
226
                     auto var = scope_.FindVar(sub_name);
Y
Yan Chunwei 已提交
227 228 229
                     PADDLE_ENFORCE_NOT_NULL(
                         var, "MultiInput(%s:%s) should not be nullptr", name,
                         sub_name);
230
                     return &var->Get<T>();
231 232 233 234 235 236 237 238 239 240
                   });
    return res;
  }

  template <typename T>
  std::vector<const T*> MultiOutput(const std::string& name) const {
    auto names = op_.Outputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
241
                   [&](const std::string& sub_name) {
242
                     auto var = scope_.FindVar(sub_name);
Y
Yan Chunwei 已提交
243 244 245
                     PADDLE_ENFORCE_NOT_NULL(
                         var, "MultiOutput(%s:%s) should not be nullptr", name,
                         sub_name);
246
                     return var->GetMutable<T>();
247 248 249 250 251
                   });
    return res;
  }

  const OperatorBase& op_;
252
  const Scope& scope_;
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
};

template <typename T>
struct EigenDeviceConverter;

template <>
struct EigenDeviceConverter<platform::CPUPlace> {
  using EigenDeviceType = Eigen::DefaultDevice;
};

#ifndef PADDLE_ONLY_CPU
template <>
struct EigenDeviceConverter<platform::GPUPlace> {
  using EigenDeviceType = Eigen::GpuDevice;
};
#endif

270
class ExecutionContext : public InferShapeContext {
271
 public:
272
  ExecutionContext(const OperatorBase& op, const Scope& scope,
D
dongzhihong 已提交
273
                   const platform::DeviceContext* device_context)
274
      : InferShapeContext(op, scope), device_context_(device_context) {}
275

Q
qijun 已提交
276 277 278
  template <typename PlaceType,
            typename DeviceType =
                typename EigenDeviceConverter<PlaceType>::EigenDeviceType>
279
  DeviceType& GetEigenDevice() const;
Q
qijun 已提交
280

D
dongzhihong 已提交
281
  platform::Place GetPlace() const { return device_context_->GetPlace(); }
Q
qijun 已提交
282

D
dongzhihong 已提交
283
  const platform::DeviceContext* device_context_;
Q
Qiao Longfei 已提交
284 285
};

Q
qijun 已提交
286 287
class OpKernel {
 public:
Q
qijun 已提交
288
  /**
289
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
290 291
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
292
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
293 294
   */

295
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
296 297 298 299

  virtual ~OpKernel() {}
};

Q
Qiao Longfei 已提交
300 301
class OperatorWithKernel : public OperatorBase {
 public:
302 303 304 305 306 307 308
  OperatorWithKernel(const std::string& type,
                     const std::vector<std::string>& inputs,
                     const std::vector<std::string>& outputs,
                     const AttributeMap& attrs,
                     std::unordered_map<std::string, int>* in_out_idxs)
      : OperatorBase(type, inputs, outputs, attrs, in_out_idxs) {}

Y
Yu Yang 已提交
309 310
  struct OpKernelKey {
    platform::Place place_;
Q
Qiao Longfei 已提交
311

Y
Yu Yang 已提交
312
    OpKernelKey() = default;
L
liaogang 已提交
313
    explicit OpKernelKey(const platform::DeviceContext& dev_ctx) {
Y
Yu Yang 已提交
314 315 316
      place_ = dev_ctx.GetPlace();
    }

Q
qijun 已提交
317 318 319
    bool operator==(const OpKernelKey& o) const {
      return platform::places_are_same_class(place_, o.place_);
    }
Y
Yu Yang 已提交
320 321 322 323 324 325 326 327 328 329 330
  };

  struct OpKernelHash {
    std::hash<bool> hash_;
    size_t operator()(const OpKernelKey& key) const {
      return hash_(platform::is_gpu_place(key.place_));
    }
  };

  using OpKernelMap =
      std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>;
Q
Qiao Longfei 已提交
331

332
  void InferShape(const Scope& scope) const override {
333
    InferShape(InferShapeContext(*this, scope));
334 335
  }

Y
Yu Yang 已提交
336
  void Run(const Scope& scope,
Y
Yu Yang 已提交
337
           const platform::DeviceContext& dev_ctx) const final {
Q
Qiao Longfei 已提交
338
    auto& opKernel = AllOpKernels().at(type_).at(OpKernelKey(dev_ctx));
339
    opKernel->Compute(ExecutionContext(*this, scope, &dev_ctx));
Q
Qiao Longfei 已提交
340 341
  }

Y
Yu Yang 已提交
342 343 344 345
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
346
  }
Y
Yan Chunwei 已提交
347

348 349 350 351 352 353
  bool SupportGPU() const override {
    OperatorWithKernel::OpKernelKey key;
    key.place_ = platform::GPUPlace();
    return OperatorWithKernel::AllOpKernels().at(type_).count(key) != 0;
  }

Y
Yu Yang 已提交
354
 protected:
355
  virtual void InferShape(const InferShapeContext& ctx) const = 0;
Q
Qiao Longfei 已提交
356 357 358 359
};

}  // namespace framework
}  // namespace paddle