math_function.cc 13.2 KB
Newer Older
Q
qijun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/math/math_function.h"
16
#include "paddle/framework/data_type.h"
17
#include "paddle/operators/math/math_function_impl.h"
Q
qijun 已提交
18 19 20 21 22 23

namespace paddle {
namespace operators {
namespace math {

template <>
24 25
void gemm<platform::CPUPlace, float>(const platform::DeviceContext& context,
                                     const CBLAS_TRANSPOSE transA,
Q
qijun 已提交
26 27 28
                                     const CBLAS_TRANSPOSE transB, const int M,
                                     const int N, const int K,
                                     const float alpha, const float* A,
29 30
                                     const float* B, const float beta,
                                     float* C) {
D
dongzhihong 已提交
31 32
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
Q
qijun 已提交
33
  int ldc = N;
Q
qijun 已提交
34 35
  cblas_sgemm(CblasRowMajor, transA, transB, M, N, K, alpha, A, lda, B, ldb,
              beta, C, ldc);
Q
qijun 已提交
36 37 38
}

template <>
39 40
void gemm<platform::CPUPlace, double>(const platform::DeviceContext& context,
                                      const CBLAS_TRANSPOSE transA,
Q
qijun 已提交
41 42 43 44
                                      const CBLAS_TRANSPOSE transB, const int M,
                                      const int N, const int K,
                                      const double alpha, const double* A,
                                      const double* B, const double beta,
45
                                      double* C) {
D
dongzhihong 已提交
46 47
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
Q
qijun 已提交
48
  int ldc = N;
Q
qijun 已提交
49 50
  cblas_dgemm(CblasRowMajor, transA, transB, M, N, K, alpha, A, lda, B, ldb,
              beta, C, ldc);
Q
qijun 已提交
51 52
}

G
guosheng 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
template <>
void gemm<platform::CPUPlace, float>(const platform::DeviceContext& context,
                                     const bool transA, const bool transB,
                                     const int M, const int N, const int K,
                                     const float alpha, const float* A,
                                     const int lda, const float* B,
                                     const int ldb, const float beta, float* C,
                                     const int ldc) {
  cblas_sgemm(CblasRowMajor, transA == false ? CblasNoTrans : CblasTrans,
              transB == false ? CblasNoTrans : CblasTrans, M, N, K, alpha, A,
              lda, B, ldb, beta, C, ldc);
}

template <>
void gemm<platform::CPUPlace, double>(const platform::DeviceContext& context,
                                      const bool transA, const bool transB,
                                      const int M, const int N, const int K,
                                      const double alpha, const double* A,
                                      const int lda, const double* B,
                                      const int ldb, const double beta,
                                      double* C, const int ldc) {
  cblas_dgemm(CblasRowMajor, transA == false ? CblasNoTrans : CblasTrans,
              transB == false ? CblasNoTrans : CblasTrans, M, N, K, alpha, A,
              lda, B, ldb, beta, C, ldc);
}

Q
qijun 已提交
79
template <>
80 81 82 83
void matmul<platform::CPUPlace, float>(
    const platform::DeviceContext& context, const framework::Tensor& matrix_a,
    bool trans_a, const framework::Tensor& matrix_b, bool trans_b, float alpha,
    framework::Tensor* matrix_out, float beta) {
Q
qijun 已提交
84 85 86 87 88 89 90 91 92
  auto dim_a = matrix_a.dims();
  auto dim_b = matrix_b.dims();
  auto dim_out = matrix_out->dims();
  PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2,
                 "The input and output of matmul be matrix");

  PADDLE_ENFORCE(platform::is_cpu_place(matrix_a.place()) &&
                     platform::is_cpu_place(matrix_b.place()) &&
                     platform::is_cpu_place(matrix_out->place()),
Q
qijun 已提交
93 94
                 "Matrix must all be in CPUPlace");

Q
qijun 已提交
95 96 97
  int M = dim_out[0];
  int N = dim_out[1];
  int K = (trans_a == false) ? dim_a[1] : dim_a[0];
Q
qijun 已提交
98

Q
qijun 已提交
99 100
  CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans;
Q
qijun 已提交
101

Q
qijun 已提交
102
  gemm<platform::CPUPlace, float>(
103 104
      context, transA, transB, M, N, K, alpha, matrix_a.data<float>(),
      matrix_b.data<float>(), beta, matrix_out->data<float>());
Q
qijun 已提交
105 106 107
}

template <>
108 109 110 111
void matmul<platform::CPUPlace, double>(
    const platform::DeviceContext& context, const framework::Tensor& matrix_a,
    bool trans_a, const framework::Tensor& matrix_b, bool trans_b, double alpha,
    framework::Tensor* matrix_out, double beta) {
Q
qijun 已提交
112 113 114 115 116 117 118 119 120
  auto dim_a = matrix_a.dims();
  auto dim_b = matrix_b.dims();
  auto dim_out = matrix_out->dims();
  PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2,
                 "The input and output of matmul be matrix");

  PADDLE_ENFORCE(platform::is_cpu_place(matrix_a.place()) &&
                     platform::is_cpu_place(matrix_b.place()) &&
                     platform::is_cpu_place(matrix_out->place()),
Q
qijun 已提交
121 122
                 "Matrix must all be in CPUPlace");

Q
qijun 已提交
123 124 125 126 127 128
  int M = dim_out[0];
  int N = dim_out[1];
  int K = (trans_a == false) ? dim_a[1] : dim_a[0];

  CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans;
Q
qijun 已提交
129

Q
qijun 已提交
130
  gemm<platform::CPUPlace, double>(
131 132
      context, transA, transB, M, N, K, alpha, matrix_a.data<double>(),
      matrix_b.data<double>(), beta, matrix_out->data<double>());
Q
qijun 已提交
133 134
}

M
Markus Kliegl 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
#ifdef PADDLE_USE_MKLML
// Use cblas_{s,d}gemm_batched if available: Run with 1 group of size batchSize.
template <>
void batched_gemm<platform::CPUPlace, float>(
    const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA,
    const CBLAS_TRANSPOSE transB, const int M, const int N, const int K,
    const float alpha, const float* A, const float* B, const float beta,
    float* C, const int batchCount, const int strideA, const int strideB) {
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  auto a_array = std::vector<const float*>(batchCount);
  auto b_array = std::vector<const float*>(batchCount);
  auto c_array = std::vector<float*>(batchCount);
  for (int k = 0; k < batchCount; ++k) {
    a_array[k] = &A[k * strideA];
    b_array[k] = &B[k * strideB];
    c_array[k] = &C[k * M * N];
  }
  cblas_sgemm_batch(CblasRowMajor, &transA, &transB, &M, &N, &K, &alpha,
                    a_array.data(), &lda, b_array.data(), &ldb, &beta,
                    c_array.data(), &ldc, 1 /* group_count */, &batchCount);
}

template <>
void batched_gemm<platform::CPUPlace, double>(
    const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA,
    const CBLAS_TRANSPOSE transB, const int M, const int N, const int K,
    const double alpha, const double* A, const double* B, const double beta,
    double* C, const int batchCount, const int strideA, const int strideB) {
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  auto a_array = std::vector<const double*>(batchCount);
  auto b_array = std::vector<const double*>(batchCount);
  auto c_array = std::vector<double*>(batchCount);
  for (int k = 0; k < batchCount; ++k) {
    a_array[k] = &A[k * strideA];
    b_array[k] = &B[k * strideB];
    c_array[k] = &C[k * M * N];
  }
  cblas_dgemm_batch(CblasRowMajor, &transA, &transB, &M, &N, &K, &alpha,
                    a_array.data(), &lda, b_array.data(), &ldb, &beta,
                    c_array.data(), &ldc, 1 /* group_count */, &batchCount);
}
#else
// The below is a naive but correct serial implementation that just loops
// over the batch dimension. This is a fallback for when the batched gemm
// functions of Intel MKL are not available. In the future, this computation
// should be parallelized.
template <>
void batched_gemm<platform::CPUPlace, float>(
    const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA,
    const CBLAS_TRANSPOSE transB, const int M, const int N, const int K,
    const float alpha, const float* A, const float* B, const float beta,
    float* C, const int batchCount, const int strideA, const int strideB) {
  for (int k = 0; k < batchCount; ++k) {
    const float* Ak = &A[k * strideA];
    const float* Bk = &B[k * strideB];
    float* Ck = &C[k * M * N];
    gemm<platform::CPUPlace, float>(context, transA, transB, M, N, K, alpha, Ak,
                                    Bk, beta, Ck);
  }
}

template <>
void batched_gemm<platform::CPUPlace, double>(
    const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA,
    const CBLAS_TRANSPOSE transB, const int M, const int N, const int K,
    const double alpha, const double* A, const double* B, const double beta,
    double* C, const int batchCount, const int strideA, const int strideB) {
  for (int k = 0; k < batchCount; ++k) {
    const double* Ak = &A[k * strideA];
    const double* Bk = &B[k * strideB];
    double* Ck = &C[k * M * N];
    gemm<platform::CPUPlace, double>(context, transA, transB, M, N, K, alpha,
                                     Ak, Bk, beta, Ck);
  }
}
#endif

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
template <>
void gemv<platform::CPUPlace, float>(const platform::DeviceContext& context,
                                     const bool trans_a, const int M,
                                     const int N, const float alpha,
                                     const float* A, const float* B,
                                     const float beta, float* C) {
  CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans;
  cblas_sgemv(CblasRowMajor, transA, M, N, alpha, A, N, B, 1, beta, C, 1);
}

template <>
void gemv<platform::CPUPlace, double>(const platform::DeviceContext& context,
                                      const bool trans_a, const int M,
                                      const int N, const double alpha,
                                      const double* A, const double* B,
                                      const double beta, double* C) {
  CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans;
  cblas_dgemv(CblasRowMajor, transA, M, N, alpha, A, N, B, 1, beta, C, 1);
}

236 237 238 239 240 241 242 243 244 245 246 247 248 249
template <>
void axpy<platform::CPUPlace, float>(const platform::DeviceContext& context,
                                     const int n, const float alpha,
                                     const float* x, float* y) {
  cblas_saxpy(n, alpha, x, 1, y, 1);
}

template <>
void axpy<platform::CPUPlace, double>(const platform::DeviceContext& context,
                                      const int n, const double alpha,
                                      const double* x, double* y) {
  cblas_daxpy(n, alpha, x, 1, y, 1);
}

Q
qijun 已提交
250
template struct SetConstant<platform::CPUPlace, float>;
251 252 253 254 255 256 257 258 259 260 261 262 263
template struct SetConstant<platform::CPUPlace, double>;
template struct SetConstant<platform::CPUPlace, int>;

#define DEFINE_CPU_TRANS(RANK)                                \
  template struct Transpose<platform::CPUPlace, float, RANK>; \
  template struct Transpose<platform::CPUPlace, double, RANK>;

DEFINE_CPU_TRANS(1);
DEFINE_CPU_TRANS(2);
DEFINE_CPU_TRANS(3);
DEFINE_CPU_TRANS(4);
DEFINE_CPU_TRANS(5);
DEFINE_CPU_TRANS(6);
Q
qijun 已提交
264

265 266
struct TensorSetConstantCPU {
  TensorSetConstantCPU(framework::Tensor* tensor, float value)
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
      : tensor_(tensor), value_(value) {}
  template <typename T>
  void operator()() const {
    auto cpu = platform::CPUPlace();
    auto* begin = tensor_->mutable_data<T>(cpu);
    std::fill(begin, begin + tensor_->numel(), static_cast<T>(value_));
  }
  framework::Tensor* tensor_;
  float value_;
};

template <>
void set_constant_with_place<platform::CPUPlace>(
    const platform::DeviceContext& context, framework::Tensor* tensor,
    float value) {
  framework::VisitDataType(framework::ToDataType(tensor->type()),
283
                           TensorSetConstantCPU(tensor, value));
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
}

struct TensorSetConstantWithPlace : public boost::static_visitor<void> {
  TensorSetConstantWithPlace(const platform::DeviceContext& context,
                             framework::Tensor* tensor, float value)
      : context_(context), tensor_(tensor), value_(value) {}

  template <typename Place>
  void operator()(Place place) const {
    set_constant_with_place<Place>(context_, tensor_, value_);
  }

  const platform::DeviceContext& context_;
  framework::Tensor* tensor_;
  float value_;
};

void set_constant(const platform::DeviceContext& context,
                  framework::Tensor* tensor, float value) {
Y
Fix CI  
Yu Yang 已提交
303
  TensorSetConstantWithPlace func(context, tensor, value);
304
#ifdef PADDLE_WITH_CUDA
Y
Fix CI  
Yu Yang 已提交
305
  tensor->place().apply_visitor(func);
306 307 308 309 310
#else
  func(platform::CPUPlace());
#endif
}

311 312 313 314 315
template struct RowwiseAdd<platform::CPUPlace, float>;
template struct RowwiseAdd<platform::CPUPlace, double>;
template struct ColwiseSum<platform::CPUPlace, float>;
template struct ColwiseSum<platform::CPUPlace, double>;

Q
qijun 已提交
316 317 318
}  // namespace math
}  // namespace operators
}  // namespace paddle