ps_gpu_wrapper.cc 23.9 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
Thunderbrook 已提交
29
#ifdef PADDLE_WITH_HETERPS
Y
yaoxuefeng 已提交
30

T
Thunderbrook 已提交
31
#include <algorithm>
Y
yaoxuefeng 已提交
32 33
#include <deque>

T
Thunderbrook 已提交
34 35 36 37 38 39 40 41 42
#include "paddle/fluid/framework/fleet/ps_gpu_wrapper.h"
#include "paddle/fluid/platform/timer.h"

namespace paddle {
namespace framework {

std::shared_ptr<PSGPUWrapper> PSGPUWrapper::s_instance_ = NULL;
bool PSGPUWrapper::is_initialized_ = false;

43
void PSGPUWrapper::PreBuildTask(std::shared_ptr<HeterContext> gpu_task) {
Y
yaoxuefeng 已提交
44
  VLOG(3) << "PSGPUWrapper::BuildGPUPSTask begin";
T
Thunderbrook 已提交
45 46
  platform::Timer timeline;
  timeline.Start();
47 48
  int device_num = heter_devices_.size();
  gpu_task->init(thread_keys_shard_num_, device_num);
Y
yaoxuefeng 已提交
49 50
  auto& local_keys = gpu_task->feature_keys_;
  auto& local_ptr = gpu_task->value_ptr_;
51

Y
yaoxuefeng 已提交
52 53 54 55 56 57 58
  std::vector<std::thread> threads;

  // data should be in input channel
  thread_keys_.resize(thread_keys_thread_num_);
  for (int i = 0; i < thread_keys_thread_num_; i++) {
    thread_keys_[i].resize(thread_keys_shard_num_);
  }
Y
yaoxuefeng 已提交
59 60 61 62

  size_t total_len = 0;
  size_t len_per_thread = 0;
  int remain = 0;
Y
yaoxuefeng 已提交
63
  size_t begin = 0;
Y
yaoxuefeng 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

  std::string data_set_name = std::string(typeid(*dataset_).name());

  if (data_set_name.find("SlotRecordDataset") != std::string::npos) {
    VLOG(0) << "ps_gpu_wrapper use SlotRecordDataset";
    SlotRecordDataset* dataset = dynamic_cast<SlotRecordDataset*>(dataset_);
    auto input_channel = dataset->GetInputChannel();
    VLOG(0) << "yxf::buildtask::inputslotchannle size: "
            << input_channel->Size();
    const std::deque<SlotRecord>& vec_data = input_channel->GetData();
    total_len = vec_data.size();
    len_per_thread = total_len / thread_keys_thread_num_;
    remain = total_len % thread_keys_thread_num_;
    VLOG(0) << "total len: " << total_len;
    auto gen_func = [this](const std::deque<SlotRecord>& total_data,
                           int begin_index, int end_index, int i) {
      for (auto iter = total_data.begin() + begin_index;
           iter != total_data.begin() + end_index; iter++) {
        const auto& ins = *iter;
        const auto& feasign_v = ins->slot_uint64_feasigns_.slot_values;
        for (const auto feasign : feasign_v) {
          int shard_id = feasign % thread_keys_shard_num_;
          this->thread_keys_[i][shard_id].insert(feasign);
        }
Y
yaoxuefeng 已提交
88
      }
Y
yaoxuefeng 已提交
89 90 91 92 93 94
    };
    for (int i = 0; i < thread_keys_thread_num_; i++) {
      threads.push_back(
          std::thread(gen_func, std::ref(vec_data), begin,
                      begin + len_per_thread + (i < remain ? 1 : 0), i));
      begin += len_per_thread + (i < remain ? 1 : 0);
Y
yaoxuefeng 已提交
95
    }
Y
yaoxuefeng 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    for (std::thread& t : threads) {
      t.join();
    }
    timeline.Pause();
    VLOG(1) << "GpuPs build task cost " << timeline.ElapsedSec() << " seconds.";
  } else {
    CHECK(data_set_name.find("MultiSlotDataset") != std::string::npos);
    VLOG(0) << "ps_gpu_wrapper use MultiSlotDataset";
    MultiSlotDataset* dataset = dynamic_cast<MultiSlotDataset*>(dataset_);
    auto input_channel = dataset->GetInputChannel();

    const std::deque<Record>& vec_data = input_channel->GetData();
    total_len = vec_data.size();
    len_per_thread = total_len / thread_keys_thread_num_;
    remain = total_len % thread_keys_thread_num_;
    auto gen_func = [this](const std::deque<Record>& total_data,
                           int begin_index, int end_index, int i) {
      for (auto iter = total_data.begin() + begin_index;
           iter != total_data.begin() + end_index; iter++) {
        const auto& ins = *iter;
        const auto& feasign_v = ins.uint64_feasigns_;
        for (const auto feasign : feasign_v) {
          uint64_t cur_key = feasign.sign().uint64_feasign_;
          int shard_id = cur_key % thread_keys_shard_num_;
          this->thread_keys_[i][shard_id].insert(cur_key);
        }
      }
    };
    for (int i = 0; i < thread_keys_thread_num_; i++) {
      threads.push_back(
          std::thread(gen_func, std::ref(vec_data), begin,
                      begin + len_per_thread + (i < remain ? 1 : 0), i));
      begin += len_per_thread + (i < remain ? 1 : 0);
    }
    for (std::thread& t : threads) {
      t.join();
    }
    timeline.Pause();
    VLOG(1) << "GpuPs build task cost " << timeline.ElapsedSec() << " seconds.";
Y
yaoxuefeng 已提交
135 136 137 138
  }

  timeline.Start();

139
  threads.clear();
Y
yaoxuefeng 已提交
140
  // merge thread_keys to shard_keys
141 142 143 144
  auto merge_ins_func = [this, gpu_task](int shard_num) {
    for (int i = 0; i < thread_keys_thread_num_; ++i) {
      gpu_task->batch_add_keys(shard_num, thread_keys_[i][shard_num]);
      thread_keys_[i][shard_num].clear();
Y
yaoxuefeng 已提交
145
    }
146 147 148 149 150 151 152 153 154 155 156 157 158
  };

  // for (size_t i = 0; i < thread_keys_.size(); i++) {
  //  gpu_task->batch_add_keys(thread_keys_[i]);
  //  for (int j = 0; j < thread_keys_thread_num_; j++) {
  //    thread_keys_[i][j].clear();
  //  }
  //}
  for (int i = 0; i < thread_keys_shard_num_; ++i) {
    threads.push_back(std::thread(merge_ins_func, i));
  }
  for (auto& t : threads) {
    t.join();
Y
yaoxuefeng 已提交
159 160 161
  }
  timeline.Pause();

Y
yaoxuefeng 已提交
162
  VLOG(1) << "GpuPs task add keys cost " << timeline.ElapsedSec()
Y
yaoxuefeng 已提交
163 164 165 166 167
          << " seconds.";
  timeline.Start();
  gpu_task->UniqueKeys();
  timeline.Pause();

168
  VLOG(1) << "GpuPs task unique cost " << timeline.ElapsedSec() << " seconds.";
Y
yaoxuefeng 已提交
169 170

  for (int i = 0; i < thread_keys_shard_num_; i++) {
171
    VLOG(3) << "GpuPs shard: " << i << " key len: " << local_keys[i].size();
Y
yaoxuefeng 已提交
172 173
    local_ptr[i].resize(local_keys[i].size());
  }
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
}

void PSGPUWrapper::BuildPull(std::shared_ptr<HeterContext> gpu_task) {
  platform::Timer timeline;
  int device_num = heter_devices_.size();
  auto& local_keys = gpu_task->feature_keys_;
  auto& local_ptr = gpu_task->value_ptr_;

  auto& device_keys = gpu_task->device_keys_;
  auto& device_vals = gpu_task->device_values_;
  auto& device_mutex = gpu_task->mutex_;

  std::vector<std::thread> threads(thread_keys_shard_num_);
#ifdef PADDLE_WITH_PSLIB
  auto fleet_ptr = FleetWrapper::GetInstance();
#endif
#ifdef PADDLE_WITH_PSCORE
  auto fleet_ptr = paddle::distributed::Communicator::GetInstance();
#endif
193

194
#if (defined PADDLE_WITH_PSLIB) && (defined PADDLE_WITH_HETERPS)
195 196 197 198 199 200 201 202 203 204 205
  // get day_id: day nums from 1970
  struct std::tm b;
  b.tm_year = year_ - 1900;
  b.tm_mon = month_ - 1;
  b.tm_mday = day_;
  b.tm_min = b.tm_hour = b.tm_sec = 0;
  std::time_t seconds_from_1970 = std::mktime(&b);
  int day_id = seconds_from_1970 / 86400;
  fleet_ptr->pslib_ptr_->_worker_ptr->set_day_id(table_id_, day_id);
#endif

206
  timeline.Start();
207
  auto ptl_func = [this, &local_keys, &local_ptr, &fleet_ptr](int i) {
Y
yaoxuefeng 已提交
208
    size_t key_size = local_keys[i].size();
Y
yaoxuefeng 已提交
209
    int32_t status = -1;
T
Thunderbrook 已提交
210
#ifdef PADDLE_WITH_PSLIB
Y
yaoxuefeng 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
    // auto tt = fleet_ptr->pslib_ptr_->_worker_ptr->pull_sparse_ptr(
    //    reinterpret_cast<char**>(local_ptr[i].data()), this->table_id_,
    //    local_keys[i].data(), key_size);
    int32_t cnt = 0;
    while (true) {
      auto tt = fleet_ptr->pslib_ptr_->_worker_ptr->pull_sparse_ptr(
          reinterpret_cast<char**>(local_ptr[i].data()), this->table_id_,
          local_keys[i].data(), key_size);
      bool flag = true;

      tt.wait();

      try {
        status = tt.get();
      } catch (const std::future_error& e) {
        VLOG(0) << "Caught a future_error with code" << e.code()
                << ", Message:" << e.what();
      }
      if (status != 0) {
        VLOG(0) << "fleet pull sparse failed, status[" << status << "]";
        sleep(sleep_seconds_before_fail_exit_);
        flag = false;
        cnt++;
      }
      if (cnt > 3) {
        VLOG(0) << "fleet pull sparse failed, retry 3 times";
        exit(-1);
      }

      if (flag) {
        break;
      }
    }
T
Thunderbrook 已提交
244 245
#endif
#ifdef PADDLE_WITH_PSCORE
Y
yaoxuefeng 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
    int32_t cnt = 0;
    while (true) {
      auto tt = fleet_ptr->_worker_ptr->pull_sparse_ptr(
          reinterpret_cast<char**>(local_ptr[i].data()), this->table_id_,
          local_keys[i].data(), key_size);
      bool flag = true;

      tt.wait();

      try {
        status = tt.get();
      } catch (const std::future_error& e) {
        VLOG(0) << "Caught a future_error with code" << e.code()
                << ", Message:" << e.what();
      }
      if (status != 0) {
        VLOG(0) << "fleet pull sparse failed, status[" << status << "]";
        sleep(sleep_seconds_before_fail_exit_);
        flag = false;
        cnt++;
      }
      if (cnt > 3) {
        VLOG(0) << "fleet pull sparse failed, retry 3 times";
        exit(-1);
      }

      if (flag) {
        break;
      }
    }
T
Thunderbrook 已提交
276
#endif
Y
yaoxuefeng 已提交
277 278 279 280 281 282 283 284
    if (status != 0) {
      LOG(ERROR) << "fleet pull sparse failed, status[" << status << "]";
      sleep(300);
      exit(-1);
    } else {
      VLOG(3) << "FleetWrapper Pull sparse to local done with table size: "
              << local_keys[i].size();
    }
285 286 287 288 289 290 291 292
  };
  for (size_t i = 0; i < threads.size(); i++) {
    threads[i] = std::thread(ptl_func, i);
  }
  for (std::thread& t : threads) {
    t.join();
  }
  timeline.Pause();
293 294
  VLOG(1) << "pull sparse from CpuPS into GpuPS cost " << timeline.ElapsedSec()
          << " seconds.";
Y
yaoxuefeng 已提交
295 296 297 298 299 300 301 302
  if (multi_node_) {
    auto gloo_wrapper = paddle::framework::GlooWrapper::GetInstance();
    if (!gloo_wrapper->IsInitialized()) {
      VLOG(0) << "GLOO is not inited";
      gloo_wrapper->Init();
    }
    gloo_wrapper->Barrier();
  }
303 304

  timeline.Start();
Y
yaoxuefeng 已提交
305 306 307
  std::vector<std::vector<std::pair<uint64_t, char*>>> pass_values;

  bool record_status = false;
308 309
#ifdef PADDLE_WITH_PSLIB
  uint16_t pass_id = 0;
Y
yaoxuefeng 已提交
310 311 312 313
  if (multi_node_) {
    record_status = fleet_ptr->pslib_ptr_->_worker_ptr->take_sparse_record(
        table_id_, pass_id, pass_values);
  }
314
#endif
Y
yaoxuefeng 已提交
315 316 317
  auto build_func = [device_num, record_status, &pass_values, &local_keys,
                     &local_ptr, &device_keys, &device_vals,
                     &device_mutex](int i) {
318
    std::vector<std::vector<FeatureKey>> task_keys(device_num);
T
Thunderbrook 已提交
319
#ifdef PADDLE_WITH_PSLIB
320 321
    std::vector<std::vector<paddle::ps::DownpourFixedFeatureValue*>> task_ptrs(
        device_num);
T
Thunderbrook 已提交
322 323 324 325 326
#endif

#ifdef PADDLE_WITH_PSCORE
    std::vector<std::vector<paddle::distributed::VALUE*>> task_ptrs(device_num);
#endif
327 328 329 330 331 332

    for (size_t j = 0; j < local_keys[i].size(); j++) {
      int shard = local_keys[i][j] % device_num;
      task_keys[shard].push_back(local_keys[i][j]);
      task_ptrs[shard].push_back(local_ptr[i][j]);
    }
333
#ifdef PADDLE_WITH_PSLIB
Y
yaoxuefeng 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
    if (record_status) {
      size_t local_keys_size = local_keys.size();
      size_t pass_values_size = pass_values.size();
      for (size_t j = 0; j < pass_values_size; j += local_keys_size) {
        auto& shard_values = pass_values[j];
        for (size_t pair_idx = 0; pair_idx < pass_values[j].size();
             pair_idx++) {
          auto& cur_pair = shard_values[pair_idx];
          int shard = cur_pair.first % device_num;
          task_keys[shard].push_back(cur_pair.first);
          task_ptrs[shard].push_back(
              (paddle::ps::DownpourFixedFeatureValue*)cur_pair.second);
        }
      }
    }
349
#endif
350 351 352 353 354 355 356
    for (int dev = 0; dev < device_num; dev++) {
      device_mutex[dev]->lock();

      int len = task_keys[dev].size();
      int cur = device_keys[dev].size();
      device_keys[dev].resize(device_keys[dev].size() + len);
      device_vals[dev].resize(device_vals[dev].size() + len);
T
Thunderbrook 已提交
357
#ifdef PADDLE_WITH_PSLIB
358 359 360 361 362 363 364 365 366 367 368 369
      for (int j = 0; j < len; ++j) {
        device_keys[dev][cur + j] = task_keys[dev][j];
        float* ptr_val = task_ptrs[dev][j]->data();
        FeatureValue& val = device_vals[dev][cur + j];
        size_t dim = task_ptrs[dev][j]->size();

        val.delta_score = ptr_val[1];
        val.show = ptr_val[2];
        val.clk = ptr_val[3];
        val.slot = ptr_val[6];
        val.lr = ptr_val[4];
        val.lr_g2sum = ptr_val[5];
T
Thunderbrook 已提交
370
        val.cpu_ptr = (uint64_t)(task_ptrs[dev][j]);
371 372 373 374 375 376 377 378 379 380 381

        if (dim > 7) {
          val.mf_size = MF_DIM + 1;
          for (int x = 0; x < val.mf_size; x++) {
            val.mf[x] = ptr_val[x + 7];
          }
        } else {
          val.mf_size = 0;
          for (int x = 0; x < MF_DIM + 1; x++) {
            val.mf[x] = 0;
          }
Y
yaoxuefeng 已提交
382 383
        }
      }
T
Thunderbrook 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
#endif
#ifdef PADDLE_WITH_PSCORE
      for (int j = 0; j < len; ++j) {
        device_keys[dev][cur + j] = task_keys[dev][j];
        distributed::VALUE* ptr_val = task_ptrs[dev][j];
        FeatureValue& val = device_vals[dev][cur + j];
        bool has_mf = 1;
        val.delta_score = 0;
        val.show = ptr_val->count_;
        val.clk = 0;
        val.slot = 0;
        val.lr = 0;
        val.lr_g2sum = 0;
        val.cpu_ptr = (uint64_t)(task_ptrs[dev][j]);

        if (has_mf) {
          val.mf_size = MF_DIM + 1;
          for (int x = 0; x < val.mf_size; x++) {
            val.mf[x] = ptr_val->data_[x];
          }
        } else {
          val.mf_size = 0;
          for (int x = 0; x < MF_DIM + 1; x++) {
            val.mf[x] = 0;
          }
        }
      }
#endif
412
      VLOG(3) << "GpuPs build hbmps done";
413 414

      device_mutex[dev]->unlock();
Y
yaoxuefeng 已提交
415 416
    }
  };
417

Y
yaoxuefeng 已提交
418
  for (size_t i = 0; i < threads.size(); i++) {
419
    threads[i] = std::thread(build_func, i);
Y
yaoxuefeng 已提交
420 421 422 423 424
  }
  for (std::thread& t : threads) {
    t.join();
  }
  timeline.Pause();
425 426
  VLOG(1) << "GpuPs prepare for build hbm cost " << timeline.ElapsedSec()
          << " seconds.";
Y
yaoxuefeng 已提交
427 428
}

429
void PSGPUWrapper::BuildGPUTask(std::shared_ptr<HeterContext> gpu_task) {
430
  int device_num = heter_devices_.size();
Y
yaoxuefeng 已提交
431 432
  platform::Timer timeline;
  timeline.Start();
T
Thunderbrook 已提交
433

434
  std::vector<size_t> feature_keys_count(device_num);
T
Thunderbrook 已提交
435
  size_t size_max = 0;
436 437
  for (int i = 0; i < device_num; i++) {
    feature_keys_count[i] = gpu_task->device_keys_[i].size();
438
    VLOG(1) << i << " card contains feasign nums: " << feature_keys_count[i];
T
Thunderbrook 已提交
439 440 441
    size_max = std::max(size_max, feature_keys_count[i]);
  }
  if (HeterPs_) {
442 443
    delete HeterPs_;
    HeterPs_ = nullptr;
T
Thunderbrook 已提交
444
  }
445 446 447 448
  if (size_max <= 0) {
    VLOG(1) << "Skip build gpu ps cause feasign nums = " << size_max;
    return;
  }
449
  std::vector<std::thread> threads(device_num);
T
Thunderbrook 已提交
450
  HeterPs_ = HeterPsBase::get_instance(size_max, resource_);
451
  HeterPs_->set_nccl_comm_and_size(inner_comms_, inter_comms_, node_size_);
Y
yaoxuefeng 已提交
452
  auto build_func = [this, &gpu_task, &feature_keys_count](int i) {
453
    VLOG(3) << "building table: " << i;
454 455 456
    this->HeterPs_->build_ps(i, gpu_task->device_keys_[i].data(),
                             gpu_task->device_values_[i].data(),
                             feature_keys_count[i], 500000, 2);
457 458 459
    // if (feature_keys_count[i] > 0) {
    //   HeterPs_->show_one_table(i);
    // }
Y
yaoxuefeng 已提交
460 461 462 463 464 465
  };
  for (size_t i = 0; i < threads.size(); i++) {
    threads[i] = std::thread(build_func, i);
  }
  for (std::thread& t : threads) {
    t.join();
T
Thunderbrook 已提交
466 467
  }
  timeline.Pause();
468
  VLOG(1) << "GpuPs build table total costs: " << timeline.ElapsedSec()
T
Thunderbrook 已提交
469
          << " s.";
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
}

void PSGPUWrapper::LoadIntoMemory(bool is_shuffle) {
  platform::Timer timer;
  VLOG(3) << "Begin LoadIntoMemory(), dataset[" << dataset_ << "]";
  timer.Start();
  dataset_->LoadIntoMemory();
  timer.Pause();
  VLOG(0) << "LoadIntoMemory cost: " << timer.ElapsedSec() << "s";

  // local shuffle
  if (is_shuffle) {
    dataset_->LocalShuffle();
  }

  std::shared_ptr<HeterContext> gpu_task = gpu_task_pool_.Get();
  gpu_task->Reset();
  data_ready_channel_->Put(gpu_task);
  VLOG(3) << "End LoadIntoMemory(), dataset[" << dataset_ << "]";
}

void PSGPUWrapper::start_build_thread() {
  running_ = true;
493
  VLOG(3) << "start build CPU ps thread.";
494
  pre_build_threads_ = std::thread([this] { pre_build_thread(); });
495 496
}

497 498
void PSGPUWrapper::pre_build_thread() {
  // prebuild: process load_data
499 500 501 502 503
  while (running_) {
    std::shared_ptr<HeterContext> gpu_task = nullptr;
    if (!data_ready_channel_->Get(gpu_task)) {
      continue;
    }
504
    VLOG(3) << "thread PreBuildTask start.";
505 506 507
    platform::Timer timer;
    timer.Start();
    // build cpu ps data process
508
    PreBuildTask(gpu_task);
509
    timer.Pause();
510 511
    VLOG(1) << "thread PreBuildTask end, cost time: " << timer.ElapsedSec()
            << "s";
512 513 514 515 516
    buildcpu_ready_channel_->Put(gpu_task);
  }
  VLOG(3) << "build cpu thread end";
}

517 518 519 520 521 522 523 524 525 526
void PSGPUWrapper::build_task() {
  // build_task: build_pull + build_gputask
  std::shared_ptr<HeterContext> gpu_task = nullptr;
  // train end, gpu free
  if (!gpu_free_channel_->Get(gpu_task)) {
    return;
  }
  // ins and pre_build end
  if (!buildcpu_ready_channel_->Get(gpu_task)) {
    return;
527
  }
528 529 530 531 532 533 534 535 536 537 538

  VLOG(1) << "BuildPull start.";
  platform::Timer timer;
  timer.Start();
  BuildPull(gpu_task);
  BuildGPUTask(gpu_task);
  timer.Pause();
  VLOG(1) << "BuildPull + BuildGPUTask end, cost time: " << timer.ElapsedSec()
          << "s";

  current_task_ = gpu_task;
539 540 541 542 543 544 545 546 547
}

void PSGPUWrapper::BeginPass() {
  platform::Timer timer;
  timer.Start();
  if (current_task_) {
    PADDLE_THROW(
        platform::errors::Fatal("[BeginPass] current task is not ended."));
  }
548 549

  build_task();
550
  timer.Pause();
551 552 553 554 555 556

  if (current_task_ == nullptr) {
    PADDLE_THROW(platform::errors::Fatal(
        "[BeginPass] after build_task, current task is not null."));
  }

557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
  VLOG(1) << "BeginPass end, cost time: " << timer.ElapsedSec() << "s";
}

void PSGPUWrapper::EndPass() {
  if (!current_task_) {
    PADDLE_THROW(
        platform::errors::Fatal("[EndPass] current task has been ended."));
  }
  platform::Timer timer;
  timer.Start();
  size_t keysize_max = 0;
  // in case of feasign_num = 0, skip dump_to_cpu
  for (size_t i = 0; i < heter_devices_.size(); i++) {
    keysize_max = std::max(keysize_max, current_task_->device_keys_[i].size());
  }
  if (keysize_max != 0) {
    HeterPs_->end_pass();
  }
575 576

  gpu_task_pool_.Push(current_task_);
577 578 579 580
  current_task_ = nullptr;
  gpu_free_channel_->Put(current_task_);
  timer.Pause();
  VLOG(1) << "EndPass end, cost time: " << timer.ElapsedSec() << "s";
T
Thunderbrook 已提交
581 582 583 584 585 586 587 588 589 590 591 592 593 594
}

void PSGPUWrapper::PullSparse(const paddle::platform::Place& place,
                              const int table_id,
                              const std::vector<const uint64_t*>& keys,
                              const std::vector<float*>& values,
                              const std::vector<int64_t>& slot_lengths,
                              const int hidden_size) {
  VLOG(3) << "Begine Gpu Ps PullSparse";
  platform::Timer all_timer;
  platform::Timer pull_gpups_timer;
  all_timer.Start();
  int64_t total_length =
      std::accumulate(slot_lengths.begin(), slot_lengths.end(), 0UL);
595
  auto buf = memory::Alloc(place, total_length * sizeof(FeatureValue));
T
Thunderbrook 已提交
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
  FeatureValue* total_values_gpu = reinterpret_cast<FeatureValue*>(buf->ptr());
  if (platform::is_cpu_place(place)) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Warning:: CPUPlace is not supported in GpuPs now."));
  } else if (platform::is_gpu_place(place)) {
    VLOG(3) << "Begin copy keys, key_num[" << total_length << "]";
    int device_id = BOOST_GET_CONST(platform::CUDAPlace, place).GetDeviceId();
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
    LoDTensor& total_keys_tensor = keys_tensor[devid_2_index];
    uint64_t* total_keys = reinterpret_cast<uint64_t*>(
        total_keys_tensor.mutable_data<int64_t>({total_length, 1}, place));

    // construct slot_level lod info
    auto slot_lengths_lod = slot_lengths;
    for (size_t i = 1; i < slot_lengths_lod.size(); i++) {
      slot_lengths_lod[i] += slot_lengths_lod[i - 1];
    }
613
    auto buf_key = memory::Alloc(place, keys.size() * sizeof(uint64_t*));
T
Thunderbrook 已提交
614
    auto buf_length =
615
        memory::Alloc(place, slot_lengths.size() * sizeof(int64_t));
T
Thunderbrook 已提交
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
    uint64_t** gpu_keys = reinterpret_cast<uint64_t**>(buf_key->ptr());
    int64_t* gpu_len = reinterpret_cast<int64_t*>(buf_length->ptr());
    cudaMemcpy(gpu_keys, keys.data(), keys.size() * sizeof(uint64_t*),
               cudaMemcpyHostToDevice);
    cudaMemcpy(gpu_len, slot_lengths_lod.data(),
               slot_lengths.size() * sizeof(int64_t), cudaMemcpyHostToDevice);

    this->CopyKeys(place, gpu_keys, total_keys, gpu_len,
                   static_cast<int>(slot_lengths.size()),
                   static_cast<int>(total_length));
    VLOG(3) << "Begin call PullSparseGPU in GPUPS, dev: " << devid_2_index
            << " len: " << total_length;
    pull_gpups_timer.Start();
    HeterPs_->pull_sparse(devid_2_index, total_keys, total_values_gpu,
                          static_cast<int>(total_length));
    // PADDLE_ENFORCE_EQ(ret, 0, platform::errors::PreconditionNotMet(
    //                              "PullSparseGPU failed in GPUPS."));
    pull_gpups_timer.Pause();

    VLOG(3) << "Begin Copy result to tensor, total_length[" << total_length
            << "]";
    this->CopyForPull(place, gpu_keys, values, total_values_gpu, gpu_len,
                      static_cast<int>(slot_lengths.size()), hidden_size,
                      total_length);
  } else {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GpuPs: PullSparse Only Support CUDAPlace Now."));
  }
  all_timer.Pause();
645
  VLOG(3) << "GpuPs PullSparse total costs: " << all_timer.ElapsedSec()
T
Thunderbrook 已提交
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
          << " s, of which GPUPS costs: " << pull_gpups_timer.ElapsedSec()
          << " s";
  VLOG(3) << "End PullSparse";
}

void PSGPUWrapper::PushSparseGrad(const paddle::platform::Place& place,
                                  const int table_id,
                                  const std::vector<const uint64_t*>& keys,
                                  const std::vector<const float*>& grad_values,
                                  const std::vector<int64_t>& slot_lengths,
                                  const int hidden_size, const int batch_size) {
  VLOG(3) << "Begin GPUPS PushSparseGrad";
  platform::Timer all_timer;
  platform::Timer push_gpups_timer;
  all_timer.Start();
  int64_t total_length =
      std::accumulate(slot_lengths.begin(), slot_lengths.end(), 0UL);
663
  auto buf = memory::Alloc(place, total_length * sizeof(FeaturePushValue));
T
Thunderbrook 已提交
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
  FeaturePushValue* total_grad_values_gpu =
      reinterpret_cast<FeaturePushValue*>(buf->ptr());
  if (platform::is_cpu_place(place)) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Warning:: CPUPlace is not supported in GPUPS now."));
  } else if (platform::is_gpu_place(place)) {
    int device_id = BOOST_GET_CONST(platform::CUDAPlace, place).GetDeviceId();
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
    LoDTensor& cached_total_keys_tensor = keys_tensor[devid_2_index];
    uint64_t* total_keys =
        reinterpret_cast<uint64_t*>(cached_total_keys_tensor.data<int64_t>());
    VLOG(3) << "Begin copy grad tensor to gpups struct";
    this->CopyForPush(place, grad_values, total_grad_values_gpu, slot_lengths,
                      hidden_size, total_length, batch_size);

    VLOG(3) << "Begin call PushSparseGPU in GPUPS, dev: " << devid_2_index
            << " len: " << total_length;
    push_gpups_timer.Start();
    HeterPs_->push_sparse(devid_2_index, total_keys, total_grad_values_gpu,
                          static_cast<int>(total_length));
    push_gpups_timer.Pause();
  } else {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GPUPS: PushSparseGrad Only Support CUDAPlace Now."));
  }
  all_timer.Pause();
690
  VLOG(3) << "PushSparseGrad total cost: " << all_timer.ElapsedSec()
T
Thunderbrook 已提交
691 692 693 694 695 696 697 698
          << " s, of which GPUPS cost: " << push_gpups_timer.ElapsedSec()
          << " s";
  VLOG(3) << "End PushSparseGrad";
}

}  // end namespace framework
}  // end namespace paddle
#endif