sequence_scatter_op.cc 7.3 KB
Newer Older
Q
Qingsheng Li 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/sequence_ops/sequence_scatter_op.h"
16
#include <memory>
Q
Qingsheng Li 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/gather.h"
#include "paddle/fluid/operators/scatter.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

class SequenceScatterOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) The source input of sequence scatter op");
    AddInput("Ids",
             "(LoDTensor) The index input of sequence scatter op where X"
             " will be  updated, must be a LoDTensor");
    AddInput("Updates",
             "(LoDTensor) The values to scatter to the input tensor "
             "X, must be a LoDTensor with the same LoD information as Ids");
    AddOutput("Out",
              "(Tensor) The output tensor of sequence scatter op, which "
              "has the same dims as X");
    AddComment(R"DOC(
Sequence Scatter Operator.

This operator scatters the Updates tensor to the input X. It uses the LoD
information of Ids to select the rows to update, and use the values in Ids as
the columns to update in each row of X.

Following are cases to better explain how this works:

Example 1:
Given an all-ones Tensor input(X)
    X.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
              [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
              [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
    X.dims = [3, 6]
a LoDTensor input(Ids)
    Ids.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
    Ids.lod =  [[0,        3,                       8,                 12]]
and a Tensor input(Updates)
    Updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
    Updates.lod =  [[  0,            3,                                 8,                         12]]
then we get an output Tensor
    Out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
    Out.dims = X.dims = [3, 6]
)DOC");
  }
};

class SequenceScatterOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    // Enforce has inputs and outputs
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of SequenceScatterOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Ids"),
                   "Input(Ids) of SequenceScatterOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Updates"),
                   "Input(Updates) of SequenceScatterOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SequenceScatterOp should not be null.");

    // Set output dim the same as input
    auto ref_dims = ctx->GetInputDim("X");
    ctx->SetOutputDim("Out", ref_dims);

    // Enforce the Updates and Ids are the same shape
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Updates")[0],
                      ctx->GetInputDim("Ids")[0],
                      "Updates and Ids should have same shape.");

    // Enforce LoD of ids and updates be the same
    if (ctx->IsRuntime()) {
      framework::Variable* ids_var =
          boost::get<framework::Variable*>(ctx->GetInputVarPtrs("Ids")[0]);
      framework::Variable* updates_var =
          boost::get<framework::Variable*>(ctx->GetInputVarPtrs("Updates")[0]);

      auto& ids_lod = ids_var->Get<LoDTensor>().lod();
      auto& updates_lod = updates_var->Get<LoDTensor>().lod();
      PADDLE_ENFORCE_EQ(ids_lod.size(), 1,
                        "Currently only level 1 LoD could be"
                        " processed by sequence scatter op.");
      PADDLE_ENFORCE_EQ(updates_lod.size(), 1,
                        "Currently only level 1 LoD "
                        "could be processed by sequence scatter op.");
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
116 117 118
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        platform::CPUPlace());
Q
Qingsheng Li 已提交
119 120 121 122 123 124 125 126 127 128
  }
};

class SequenceScatterGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    ctx->SetOutputDim(framework::GradVarName("Updates"),
                      ctx->GetInputDim("Updates"));
129 130
    ctx->SetOutputDim(framework::GradVarName("X"),
                      ctx->GetInputDim(framework::GradVarName("Out")));
Q
Qingsheng Li 已提交
131 132 133 134 135
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
136 137 138
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   platform::CPUPlace());
Q
Qingsheng Li 已提交
139 140 141
  }
};

H
hong 已提交
142 143
template <typename T>
class SequenceScatterGradMaker : public framework::SingleGradOpMaker<T> {
144
 public:
H
hong 已提交
145
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
146 147

 protected:
H
hong 已提交
148 149
  std::unique_ptr<T> Apply() const override {
    std::unique_ptr<T> op(new T());
150
    op->SetType("sequence_scatter_grad");
H
hong 已提交
151 152 153 154 155 156 157
    op->SetInput("Ids", this->Input("Ids"));
    op->SetInput("Updates", this->Input("Updates"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Updates"),
                  this->InputGrad("Updates"));
    op->SetAttrMap(this->Attrs());
158 159 160 161 162 163 164
    return op;
  }
};

DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(
    SequenceScatterGradNoNeedBufferVarsInference, "Updates");

Q
Qingsheng Li 已提交
165 166 167 168 169 170
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(sequence_scatter, ops::SequenceScatterOp,
                  ops::SequenceScatterOpMaker,
H
hong 已提交
171 172
                  ops::SequenceScatterGradMaker<paddle::framework::OpDesc>,
                  ops::SequenceScatterGradMaker<paddle::imperative::OpBase>);
173 174
REGISTER_OPERATOR(sequence_scatter_grad, ops::SequenceScatterGradOp,
                  ops::SequenceScatterGradNoNeedBufferVarsInference);
Q
Qingsheng Li 已提交
175 176 177 178 179 180 181 182 183
REGISTER_OP_CPU_KERNEL(sequence_scatter, ops::SequenceScatterOpKernel<float>,
                       ops::SequenceScatterOpKernel<double>,
                       ops::SequenceScatterOpKernel<int>,
                       ops::SequenceScatterOpKernel<int64_t>);
REGISTER_OP_CPU_KERNEL(sequence_scatter_grad,
                       ops::SequenceScatterGradientOpKernel<float>,
                       ops::SequenceScatterGradientOpKernel<double>,
                       ops::SequenceScatterGradientOpKernel<int>,
                       ops::SequenceScatterGradientOpKernel<int64_t>);